3.22 If f e R[a, b], prove |f| € R[a, b]. (Hint: Use Exercises 3.20 and 3.21 above.)

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
3.22 If f € R[a, b), prove |f| € R[a, b]. (Hint: Use Exercises 3.20 and 3.21
above.)
For reference
3.20 † Let f be any real-valued function on a domain DCR. Define
f+(æ) = f(x) if f(x) > 0,
if f(r) <0.
f*(x) =
and let
-f(z)
-f(r)
if f(x) < 0,
if f(x) 20
f (2) =
for all r E D. Prove that
f(x) = f*(x) – ƒ¯ (x) and |f(x)| = f+(x) + f¯(x)
for all r e D. (Hint: Just check the cases based on the sign of f(r).)
3.21 1 Suppose f E R[a, b]. Prove: f+ and f- are in R[a, b). Hint: Show that
U+, P) - L(f+, Р) <U(, P) — L(f, P).
Transcribed Image Text:3.22 If f € R[a, b), prove |f| € R[a, b]. (Hint: Use Exercises 3.20 and 3.21 above.) For reference 3.20 † Let f be any real-valued function on a domain DCR. Define f+(æ) = f(x) if f(x) > 0, if f(r) <0. f*(x) = and let -f(z) -f(r) if f(x) < 0, if f(x) 20 f (2) = for all r E D. Prove that f(x) = f*(x) – ƒ¯ (x) and |f(x)| = f+(x) + f¯(x) for all r e D. (Hint: Just check the cases based on the sign of f(r).) 3.21 1 Suppose f E R[a, b]. Prove: f+ and f- are in R[a, b). Hint: Show that U+, P) - L(f+, Р) <U(, P) — L(f, P).
Expert Solution
steps

Step by step

Solved in 3 steps

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,