3.) Use the Maximum/Minimum Principles to deduce that the solution u of the problem D.E. ut = kuzr 00 B.C. u(0, t) = 0 u(7, t) = 0 I.C. u(x, 0) = sin(x) + ; sin(2x) %3D satisfies 0 < u(x, t) 0.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
3.) Use the Maximum/Minimum Principles to deduce that the solution u of the problem
D.E. u = kuz 0 <r < T, t N 0
B.C. u(0, t) = 0
u (π, t) 0
I.C. u(x, 0) = sin(x) + sin(2x)
%3D
satisfies 0 < u(, t) <V3 for all 0 < ¤ < T, t > 0.
Transcribed Image Text:3.) Use the Maximum/Minimum Principles to deduce that the solution u of the problem D.E. u = kuz 0 <r < T, t N 0 B.C. u(0, t) = 0 u (π, t) 0 I.C. u(x, 0) = sin(x) + sin(2x) %3D satisfies 0 < u(, t) <V3 for all 0 < ¤ < T, t > 0.
Expert Solution
Step 1

given

differential equation

ut=kuxx    ...i

where 0xπ, t0

boundary condition

u0,t=0       uπ,t=0

initial condition 

ux,0=sinx+12sin2x

satisfies

0ux,t343 for all 0xπ,t0

Step 2

solution

let the solution be of the form

ux,t=XxTt

differentiate it with respect to x and t

ux=X'xTt

ut=XxT't

again differentiate ux=X'xTt with respect to x

ux=X''xTt

substitute the values in equation i

we get

kX''xTt=XxT'tX''xTt=1kXxT't

Step 3

divide both sides by XxTt

X''xXx=1kT'tTt

let 

X''xXx=1kT'tTt=-p2

p is any constant

we have 

X''xXx=-p2X''x+p2Xx=0   ...ii

and 

1kT'tTt=-p2T'tTt=-p2k   ...iii

Step 4

solving equation (ii)

X''x+p2Xx=0

auxillary equation

m2+p2=0m2=-p2m=±ip

we have 

Xx=c1cospx+c2sinpx

integrate equation (iii) 

we get

T'tTt=-p2kdtlnTt=-p2ktTt=e-p2kt

thus the solution becomes

ux,t=c1cospx+c2sinpxe-p2kt

steps

Step by step

Solved in 7 steps

Blurred answer
Knowledge Booster
Laplace Transformation
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,