3. Use Lax-Friedrichs method (λ = a- to approximate O 1 λ - Vi,j+1 = 7 (Vi+1,j + Vi−1,j) − 2 (Ui+1,j — Ui−1,j) For the following two sets of step sizes, compute solutions till t = 0.4. Then compare to the exact solution u(x, t) = sin л(x + 5t) at t = 0.4. which one gives you stable solutions? (a) Ax = 0.5 and At = 0.2 (b) Ax = 0.5 and At = 0.1 (You may just write down the U values at each mesh point on the graph below.) ta o ut 5ux = 0, 0≤x≤ 2,t> 0 u(x, 0) = sin лx. O- t O O
3. Use Lax-Friedrichs method (λ = a- to approximate O 1 λ - Vi,j+1 = 7 (Vi+1,j + Vi−1,j) − 2 (Ui+1,j — Ui−1,j) For the following two sets of step sizes, compute solutions till t = 0.4. Then compare to the exact solution u(x, t) = sin л(x + 5t) at t = 0.4. which one gives you stable solutions? (a) Ax = 0.5 and At = 0.2 (b) Ax = 0.5 and At = 0.1 (You may just write down the U values at each mesh point on the graph below.) ta o ut 5ux = 0, 0≤x≤ 2,t> 0 u(x, 0) = sin лx. O- t O O
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
![At.
3. Use Lax-Friedrichs method (λ = a ·
Ax
to approximate
λ
Ui,j+1 = ½ (Ui+1,j + Ui−1,j) — ^ (Ui+1,j — Ui-1,j)
ut 5ux = 0, 0≤x≤ 2,t> 0
u(x,0) = sin x.
For the following two sets of step sizes, compute solutions till t = 0.4. Then compare to the exact solution
u(x, t) = sin ï(x + 5t) at t = 0.4. which one gives you stable solutions?
(a) Ax = 0.5 and At = 0.2
(b) Ax = 0.5 and At = 0.1
(You may just write down the U values at each mesh point on the graph below.)
t](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fd83c3ce1-cd72-4e3b-8702-f62923bac270%2F13375c01-7c00-4f12-90f3-c3f37d6e399c%2Fltn4be_processed.png&w=3840&q=75)
Transcribed Image Text:At.
3. Use Lax-Friedrichs method (λ = a ·
Ax
to approximate
λ
Ui,j+1 = ½ (Ui+1,j + Ui−1,j) — ^ (Ui+1,j — Ui-1,j)
ut 5ux = 0, 0≤x≤ 2,t> 0
u(x,0) = sin x.
For the following two sets of step sizes, compute solutions till t = 0.4. Then compare to the exact solution
u(x, t) = sin ï(x + 5t) at t = 0.4. which one gives you stable solutions?
(a) Ax = 0.5 and At = 0.2
(b) Ax = 0.5 and At = 0.1
(You may just write down the U values at each mesh point on the graph below.)
t
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 4 steps with 4 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)