3. Solve the LP problem using the dual simplex method. minimize x1 +45x2 + 3x3 x1 +5x2-x3 x1 + x2 + 2x3 -x1 + 3x₂ + 3x3 -3x1 + 8x2 - 5x3 1, 2, 3 ≥ 0. subject to > 4 ≥ 2 ≥ 5 23

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
LP
3. Solve the LP problem using the dual simplex method.
minimize x1 +45x2 + 3x3
x1 + 5x2-x3
x1 + x2 + 2x3
-x1 + 3x2 + 3x3
-3x1 + 8x25x3
X1, X2, X3 ≥ 0.
subject to
> 4
≥2
> 5
≥ 3
Transcribed Image Text:3. Solve the LP problem using the dual simplex method. minimize x1 +45x2 + 3x3 x1 + 5x2-x3 x1 + x2 + 2x3 -x1 + 3x2 + 3x3 -3x1 + 8x25x3 X1, X2, X3 ≥ 0. subject to > 4 ≥2 > 5 ≥ 3
Ry +R₂
R3-R₂
Now for the pivot column, compute
C
азјсоз
max
So, (2,
byr
X₁
X+ -1
1
Xs
X₁
x₂
7
X4
X₁
Corresponds to colurn:1
and the piviot is -4
1
0
1
O
1
g:
Laz;
O
th
-1
1/4
I
entry = -4 is our pivot element
Хч
Xs
1
O
y = x₁
X2
1/4
1
-344-1/2
1/4
3/4
X3
X4
XsJ
X3
O
[0] 2/3
7/3
-1
112
I
1/2
ERS
2023-00
1/2
1/2
2/3
O
HOL Keny
= max
2/3
7/3
O
O
aintenance
4898 La
30084
{-4723-1
-1/4
O
1
O
O 1/4
O
-4/3
1
O
-1/4
-1/4
-3
5/4
-7/4
5/4
-514
5/4
7/3
1/3
0 -3
[a₁, 92]
Since the basic
matrix B=
the basis vector X₂ = [X₁ X₂] = [ ²/1/23/2]
this is basic and feasible since all B₁³0, the current basic
is optimal
where
[X, X4] = []
since b, 40, we pivo + in row 1.
For pivot column, consider
max
ату соз
3
도후, 흐,.
-3
32-4
= max {-1,-1+1}=
= 2
7
9
1440
3+3
3
Now XB =
sci
{aij
the corresponding optimal valve for the objective function is
=max
Transcribed Image Text:Ry +R₂ R3-R₂ Now for the pivot column, compute C азјсоз max So, (2, byr X₁ X+ -1 1 Xs X₁ x₂ 7 X4 X₁ Corresponds to colurn:1 and the piviot is -4 1 0 1 O 1 g: Laz; O th -1 1/4 I entry = -4 is our pivot element Хч Xs 1 O y = x₁ X2 1/4 1 -344-1/2 1/4 3/4 X3 X4 XsJ X3 O [0] 2/3 7/3 -1 112 I 1/2 ERS 2023-00 1/2 1/2 2/3 O HOL Keny = max 2/3 7/3 O O aintenance 4898 La 30084 {-4723-1 -1/4 O 1 O O 1/4 O -4/3 1 O -1/4 -1/4 -3 5/4 -7/4 5/4 -514 5/4 7/3 1/3 0 -3 [a₁, 92] Since the basic matrix B= the basis vector X₂ = [X₁ X₂] = [ ²/1/23/2] this is basic and feasible since all B₁³0, the current basic is optimal where [X, X4] = [] since b, 40, we pivo + in row 1. For pivot column, consider max ату соз 3 도후, 흐,. -3 32-4 = max {-1,-1+1}= = 2 7 9 1440 3+3 3 Now XB = sci {aij the corresponding optimal valve for the objective function is =max
Expert Solution
steps

Step by step

Solved in 7 steps with 5 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,