3. Solve the IVP problem of Dirac's Delta function: y"+3y'+2y = 10 (sin t +d(t-1)); y(0)=0, y'(0)=-1 Note: d is 'delta' in Greek character O y = -2e^(-2t) + 6e^(-t-3) cos t + sin t - 10 u(t-1) [e^(-t+1) - e^(-2(t-1))] y = -2e^(-2t) + 6e^(-t-3) cos t + sin t + 10 u(t-1) [e^(-t+1) - e^(-2(t-1))] O y = -2e^(-2t) - 6e^(-t-3) cos t + sin t - 10 u(t-1) [e^(-t+1) - e^(-2(t-1))]

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
3. Solve the IVP problem of Dirac's Delta function:
y"+3y'+2y = 10 (sin t +d(t-1)); y(0)=0, y'(0)=-1
Note: d is 'delta' in Greek character
O y = -2e^(-2t) + 6e^(-t-3) cos t + sin t - 10 u(t-1) [e^(-t+1) - e^(-2(t-1))]
y = -2e^(-2t) + 6e^(-t-3) cos t + sin t + 10 u(t-1) [e^(-t+1) - e^(-2(t-1))]
O y = -2e^(-2t) - 6e^(-t-3) cos t + sin t - 10 u(t-1) [e^(-t+ 1) - e^(-2(t-1)]
Transcribed Image Text:3. Solve the IVP problem of Dirac's Delta function: y"+3y'+2y = 10 (sin t +d(t-1)); y(0)=0, y'(0)=-1 Note: d is 'delta' in Greek character O y = -2e^(-2t) + 6e^(-t-3) cos t + sin t - 10 u(t-1) [e^(-t+1) - e^(-2(t-1))] y = -2e^(-2t) + 6e^(-t-3) cos t + sin t + 10 u(t-1) [e^(-t+1) - e^(-2(t-1))] O y = -2e^(-2t) - 6e^(-t-3) cos t + sin t - 10 u(t-1) [e^(-t+ 1) - e^(-2(t-1)]
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 7 steps with 7 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,