3. Solve the equation: x(2x +7)=4.

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
**Problem 3:** Solve the equation: \( x(2x + 7) = 4 \).

**Solution Steps:**

1. **Expand the Equation:**
   \[
   x(2x + 7) = 4 \implies 2x^2 + 7x = 4
   \]

2. **Bring all terms to one side to form a quadratic equation:**
   \[
   2x^2 + 7x - 4 = 0
   \]

3. **Solve the Quadratic Equation:**
   To solve \(2x^2 + 7x - 4 = 0\), use the quadratic formula:
   \[
   x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
   \]
   Where \(a = 2\), \(b = 7\), and \(c = -4\).

4. **Calculate the Discriminant:**
   \[
   b^2 - 4ac = 7^2 - 4(2)(-4) = 49 + 32 = 81
   \]

5. **Apply the Quadratic Formula:**
   \[
   x = \frac{-7 \pm \sqrt{81}}{4} = \frac{-7 \pm 9}{4}
   \]

6. **Find the Roots:**
   - Positive Root: 
     \[
     x = \frac{-7 + 9}{4} = \frac{2}{4} = \frac{1}{2}
     \]
   - Negative Root:
     \[
     x = \frac{-7 - 9}{4} = \frac{-16}{4} = -4
     \]

**Conclusion:**
The solutions to the equation \( x(2x + 7) = 4 \) are \( x = \frac{1}{2} \) and \( x = -4 \).
Transcribed Image Text:**Problem 3:** Solve the equation: \( x(2x + 7) = 4 \). **Solution Steps:** 1. **Expand the Equation:** \[ x(2x + 7) = 4 \implies 2x^2 + 7x = 4 \] 2. **Bring all terms to one side to form a quadratic equation:** \[ 2x^2 + 7x - 4 = 0 \] 3. **Solve the Quadratic Equation:** To solve \(2x^2 + 7x - 4 = 0\), use the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Where \(a = 2\), \(b = 7\), and \(c = -4\). 4. **Calculate the Discriminant:** \[ b^2 - 4ac = 7^2 - 4(2)(-4) = 49 + 32 = 81 \] 5. **Apply the Quadratic Formula:** \[ x = \frac{-7 \pm \sqrt{81}}{4} = \frac{-7 \pm 9}{4} \] 6. **Find the Roots:** - Positive Root: \[ x = \frac{-7 + 9}{4} = \frac{2}{4} = \frac{1}{2} \] - Negative Root: \[ x = \frac{-7 - 9}{4} = \frac{-16}{4} = -4 \] **Conclusion:** The solutions to the equation \( x(2x + 7) = 4 \) are \( x = \frac{1}{2} \) and \( x = -4 \).
Expert Solution
Step 1

Calculus homework question answer, step 1, image 1

trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning