3. Show that if n ≥ 5, then the only normal subgroups of Sn are {}, An, and Sn. You may use the theorem that An is simple for any n ≥ 5. (Hint: Let HSn. Show that (HnAn) ◄ An, so HnAn = {e} or An. If HnAn An, show that H An or Sn. If HnAn = {ɛ}, use the formula |HA| = |H| · |An\/|H^ An to show that |H| ≤ 2.) = =
3. Show that if n ≥ 5, then the only normal subgroups of Sn are {}, An, and Sn. You may use the theorem that An is simple for any n ≥ 5. (Hint: Let HSn. Show that (HnAn) ◄ An, so HnAn = {e} or An. If HnAn An, show that H An or Sn. If HnAn = {ɛ}, use the formula |HA| = |H| · |An\/|H^ An to show that |H| ≤ 2.) = =
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
![3. Show that if n ≥ 5, then the only normal subgroups of Sn are {}, An, and Sn. You
may use the theorem that An is simple for any n ≥ 5. (Hint: Let HSn. Show
that (H ^ A₂) ◄ An, so HAn = {ε} or An. If H An = An, show that H = An
^
or Sn. If H An = {}, use the formula |HA| = |H|· |An\/|H^ An to show that
|H| ≤ 2.)](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Ffe72e13b-12e8-4646-917c-376e7356872c%2Fab118fe9-566f-4144-a66c-41ddcdfb1e3e%2Fm6r84rs_processed.jpeg&w=3840&q=75)
Transcribed Image Text:3. Show that if n ≥ 5, then the only normal subgroups of Sn are {}, An, and Sn. You
may use the theorem that An is simple for any n ≥ 5. (Hint: Let HSn. Show
that (H ^ A₂) ◄ An, so HAn = {ε} or An. If H An = An, show that H = An
^
or Sn. If H An = {}, use the formula |HA| = |H|· |An\/|H^ An to show that
|H| ≤ 2.)
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 3 steps with 1 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)