3. Metadata a) List and briefly describe the metadata below. More date = more variables→ more descriptive → enriched narrative. Includes capturing of meta-data (data that describe the data) to help analysts extract latent and nuanced insights. data TimeStamp Day 42370.0424 Fridey 42370.0431 Friday 42370.0438 Friday Location PaymentTyp IP Addes 164 138 2821 136. 142175.7 24.243. 197 20 Inde Terminal Lo Sales cash cash enline 23043731, 76.6s 29.7 43 235 16 48.03, 26J3.68 41.91 $ 320 81 212. 150.95 44.42 204 19 10.39, 178.36 654 233.15 30.78, 219.04 25.87 S online 24 online EFTPOS 4 42370 0445 Friday store EFTPOS 30 42370.0452 Friday 42370.0458 Friday 42370.0465 Friday 253. 119.128 23 180.2491782 online EFTPOS 50 online EFTPOS 205 02 24.6, 86.07 285 online cash 2348 3112, 17s.05 s0.41 144 126 134.16 22 32.01 S7.08, 185.08 57.37 139.71 21.39, 241.08 45.4 S 42373.3403 Monday 42373.341 Monday 42373 3417 Monday 42373.3424 Monday 42373 3431 Monday 42373.3438 Monday 4750 store EFTPOS 23 4751 store EFTPOS 259 15 50.33, 101.65 5.76 5.76 56.47, 335 98 42.59 353.13 10.37, 2373 25 45 5 417 4799, 172.02 58 4752 online EFTPOS 95.129.144.10 50 4753 online EFTPOS 132 152 2510 4754 online EFTPOS 11 16 55.7 4755 online EFTPOS 155..24 23 31 Meta data b) What information does it provide to help enhance business objectives? c) How can metadata be used to improve services and customer experiences? d) Evaluate the key differences between small data and big data analytics for Tibco Electricals.
3. Metadata a) List and briefly describe the metadata below. More date = more variables→ more descriptive → enriched narrative. Includes capturing of meta-data (data that describe the data) to help analysts extract latent and nuanced insights. data TimeStamp Day 42370.0424 Fridey 42370.0431 Friday 42370.0438 Friday Location PaymentTyp IP Addes 164 138 2821 136. 142175.7 24.243. 197 20 Inde Terminal Lo Sales cash cash enline 23043731, 76.6s 29.7 43 235 16 48.03, 26J3.68 41.91 $ 320 81 212. 150.95 44.42 204 19 10.39, 178.36 654 233.15 30.78, 219.04 25.87 S online 24 online EFTPOS 4 42370 0445 Friday store EFTPOS 30 42370.0452 Friday 42370.0458 Friday 42370.0465 Friday 253. 119.128 23 180.2491782 online EFTPOS 50 online EFTPOS 205 02 24.6, 86.07 285 online cash 2348 3112, 17s.05 s0.41 144 126 134.16 22 32.01 S7.08, 185.08 57.37 139.71 21.39, 241.08 45.4 S 42373.3403 Monday 42373.341 Monday 42373 3417 Monday 42373.3424 Monday 42373 3431 Monday 42373.3438 Monday 4750 store EFTPOS 23 4751 store EFTPOS 259 15 50.33, 101.65 5.76 5.76 56.47, 335 98 42.59 353.13 10.37, 2373 25 45 5 417 4799, 172.02 58 4752 online EFTPOS 95.129.144.10 50 4753 online EFTPOS 132 152 2510 4754 online EFTPOS 11 16 55.7 4755 online EFTPOS 155..24 23 31 Meta data b) What information does it provide to help enhance business objectives? c) How can metadata be used to improve services and customer experiences? d) Evaluate the key differences between small data and big data analytics for Tibco Electricals.
Database System Concepts
7th Edition
ISBN:9780078022159
Author:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Chapter1: Introduction
Section: Chapter Questions
Problem 1PE
Related questions
Question
![3. Metadata
a) List and briefly describe the metadata below.
More date = more variables > more descriptive → enriched narrative.
Includes capturing of meta-data (data that describe the data) to help analysts
extract latent and nuanced insights.
data
TimeStamp Day
42370.0424 Friday
Location PaymentTyp IP Address
164.138 2821
136.142175.7
24.243.197 20
Terminal Loc
230.43731, 76.65 29.7
235 16 48.03, 263.68 41.91 S
320 81 212, 150.95 44.42
Index
Sales
anline cash
online cash
43
42370.0431 Friday
24
42370.0438 Friday
online
EFTPOS
4
42370 0445 Friday
store
EFTPOS
204 19 10 39, 178 36 6.54
30
42370.0452 Frida
online
EFTPOS
253.119.128.23
233 15 30.78, 219.04 25.87 S
50
42370.0458 Friday
42370.0465 Friday
online
EFTPOS
180.2491782
205.02 24.6, 86.07 285
online
cash
144 126134.16
234.8 31 12, 175.05 S041
22
32.01 S7.08, 185.08 57.37
139.71 21.39, 241.08 45.48S
259 15 50 33, 101.65 5.76
5.76 56.47, 335 98 42.59
4750
42373.3403 Monday
store
EFTPOS
23
4751
42373.341 Monday
store
EFTPOS
4752
42373 3417 Monday
online
EFTPOS
95129.144.10
50
4753
42373.3424 Monday
online
EFTPOS
132 152 2510
42373 3431 Monday
42373.3438 Monday
4754
online
EFTPOS
11 186 55.7
353 13 10.37, 2373 25.45
4755
online
EFTPOS
155.89.24.23
41.87 4799, 172.02 58
TE
Meta data
b) What information does it provide to help enhance business objectives?
c) How can metadata be used to improve services and customer experiences?
d) Evaluate the key differences between small data and big data analytics for Tibco Electricals.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fc82b1a45-feb2-4df0-9099-bcb80e1ee551%2F019889f1-5062-40d2-8460-2119f86f24e7%2Fr6s2i9_processed.jpeg&w=3840&q=75)
Transcribed Image Text:3. Metadata
a) List and briefly describe the metadata below.
More date = more variables > more descriptive → enriched narrative.
Includes capturing of meta-data (data that describe the data) to help analysts
extract latent and nuanced insights.
data
TimeStamp Day
42370.0424 Friday
Location PaymentTyp IP Address
164.138 2821
136.142175.7
24.243.197 20
Terminal Loc
230.43731, 76.65 29.7
235 16 48.03, 263.68 41.91 S
320 81 212, 150.95 44.42
Index
Sales
anline cash
online cash
43
42370.0431 Friday
24
42370.0438 Friday
online
EFTPOS
4
42370 0445 Friday
store
EFTPOS
204 19 10 39, 178 36 6.54
30
42370.0452 Frida
online
EFTPOS
253.119.128.23
233 15 30.78, 219.04 25.87 S
50
42370.0458 Friday
42370.0465 Friday
online
EFTPOS
180.2491782
205.02 24.6, 86.07 285
online
cash
144 126134.16
234.8 31 12, 175.05 S041
22
32.01 S7.08, 185.08 57.37
139.71 21.39, 241.08 45.48S
259 15 50 33, 101.65 5.76
5.76 56.47, 335 98 42.59
4750
42373.3403 Monday
store
EFTPOS
23
4751
42373.341 Monday
store
EFTPOS
4752
42373 3417 Monday
online
EFTPOS
95129.144.10
50
4753
42373.3424 Monday
online
EFTPOS
132 152 2510
42373 3431 Monday
42373.3438 Monday
4754
online
EFTPOS
11 186 55.7
353 13 10.37, 2373 25.45
4755
online
EFTPOS
155.89.24.23
41.87 4799, 172.02 58
TE
Meta data
b) What information does it provide to help enhance business objectives?
c) How can metadata be used to improve services and customer experiences?
d) Evaluate the key differences between small data and big data analytics for Tibco Electricals.
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, computer-science and related others by exploring similar questions and additional content below.Recommended textbooks for you
![Database System Concepts](https://www.bartleby.com/isbn_cover_images/9780078022159/9780078022159_smallCoverImage.jpg)
Database System Concepts
Computer Science
ISBN:
9780078022159
Author:
Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:
McGraw-Hill Education
![Starting Out with Python (4th Edition)](https://www.bartleby.com/isbn_cover_images/9780134444321/9780134444321_smallCoverImage.gif)
Starting Out with Python (4th Edition)
Computer Science
ISBN:
9780134444321
Author:
Tony Gaddis
Publisher:
PEARSON
![Digital Fundamentals (11th Edition)](https://www.bartleby.com/isbn_cover_images/9780132737968/9780132737968_smallCoverImage.gif)
Digital Fundamentals (11th Edition)
Computer Science
ISBN:
9780132737968
Author:
Thomas L. Floyd
Publisher:
PEARSON
![Database System Concepts](https://www.bartleby.com/isbn_cover_images/9780078022159/9780078022159_smallCoverImage.jpg)
Database System Concepts
Computer Science
ISBN:
9780078022159
Author:
Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:
McGraw-Hill Education
![Starting Out with Python (4th Edition)](https://www.bartleby.com/isbn_cover_images/9780134444321/9780134444321_smallCoverImage.gif)
Starting Out with Python (4th Edition)
Computer Science
ISBN:
9780134444321
Author:
Tony Gaddis
Publisher:
PEARSON
![Digital Fundamentals (11th Edition)](https://www.bartleby.com/isbn_cover_images/9780132737968/9780132737968_smallCoverImage.gif)
Digital Fundamentals (11th Edition)
Computer Science
ISBN:
9780132737968
Author:
Thomas L. Floyd
Publisher:
PEARSON
![C How to Program (8th Edition)](https://www.bartleby.com/isbn_cover_images/9780133976892/9780133976892_smallCoverImage.gif)
C How to Program (8th Edition)
Computer Science
ISBN:
9780133976892
Author:
Paul J. Deitel, Harvey Deitel
Publisher:
PEARSON
![Database Systems: Design, Implementation, & Manag…](https://www.bartleby.com/isbn_cover_images/9781337627900/9781337627900_smallCoverImage.gif)
Database Systems: Design, Implementation, & Manag…
Computer Science
ISBN:
9781337627900
Author:
Carlos Coronel, Steven Morris
Publisher:
Cengage Learning
![Programmable Logic Controllers](https://www.bartleby.com/isbn_cover_images/9780073373843/9780073373843_smallCoverImage.gif)
Programmable Logic Controllers
Computer Science
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education