3. Мaximize z %3 subject to Зх, + 2хz + 5х; + 7x4 3x, + 2х, + Xз 5x, + х, + 2хз + 4x4 3D 7 + Xз — 2x45 12 x1 2 0, x2 2 0, x3 2 0, x4 2 0. 4x1 4. Мaximize z %3D 2x, + x; + 3х; + 4x4 subject to 4х, + 2х, + 5х; + 5x, s 10 4х, + 2x2 + 5хз + 5x, 2 5 Зx, + 5x, + 4х; + X2 8 Зх, + 5х, + 4хз + X4S 15 X1 + X2 + x3 + X4 = 20 х, 2 0, х2 2 0, хз 2 0, X4 2 0.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

find the dual of the given linear programming problem

3. Маximize z%3D
subject to
Зх, + 2х, + 5х; + 7x4
1
3x, + 2x2 + X3
5x, + х, + 2х; + 4x4 3D 7
+ X3 – 2x4 S 12
x2 2 0, x3 2 0, x4 2 0.
4x1
-
x, 2 0,
4. Мaximize z%3D2х, + x, + 3x; + 4x4
subject to
4х, + 2х, + 5х, + 5x, < 10
4х, + 2х, + 5xз + 5x4 2 5
Зх, + 5х, + 4xз + xа28
Зх, + 5х, + 4xз + X4S 15
X1 + x2 + x3 + X4 = 20
x2 2 0, x3 2 0, x4 2 0.
х, 2 0,
Transcribed Image Text:3. Маximize z%3D subject to Зх, + 2х, + 5х; + 7x4 1 3x, + 2x2 + X3 5x, + х, + 2х; + 4x4 3D 7 + X3 – 2x4 S 12 x2 2 0, x3 2 0, x4 2 0. 4x1 - x, 2 0, 4. Мaximize z%3D2х, + x, + 3x; + 4x4 subject to 4х, + 2х, + 5х, + 5x, < 10 4х, + 2х, + 5xз + 5x4 2 5 Зх, + 5х, + 4xз + xа28 Зх, + 5х, + 4xз + X4S 15 X1 + x2 + x3 + X4 = 20 x2 2 0, x3 2 0, x4 2 0. х, 2 0,
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,