3. Let X and P be the position and linear momentum operators of a single particle, respectively. The corresponding representations in one-dimensional position space are X ký = xv(x) dv(x) Ph = -ih- dx where x is position and is a wavefunction. a) Find the commutator X, Consider the case of a particle of mass m in a 1-D box of length L, where the wavefunctions are { Vž sin(k,7), 0< x < L 0, Un(x) = otherwise NT kin n e Z, n > 0 L' b) Show that pn is an eigenfunction of the kinetic energy operator corresponding eigenvalue? What is the 2m c) Find < X >. d) Find < P >. e) Find < P² >.
3. Let X and P be the position and linear momentum operators of a single particle, respectively. The corresponding representations in one-dimensional position space are X ký = xv(x) dv(x) Ph = -ih- dx where x is position and is a wavefunction. a) Find the commutator X, Consider the case of a particle of mass m in a 1-D box of length L, where the wavefunctions are { Vž sin(k,7), 0< x < L 0, Un(x) = otherwise NT kin n e Z, n > 0 L' b) Show that pn is an eigenfunction of the kinetic energy operator corresponding eigenvalue? What is the 2m c) Find < X >. d) Find < P >. e) Find < P² >.
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
d,e step by step
![**Problem 3**:
Let \( \hat{X} \) and \( \hat{P} \) be the position and linear momentum operators of a single particle, respectively. The corresponding representations in one-dimensional position space are:
\[
\hat{X} \psi = x \psi(x)
\]
\[
\hat{P} \psi = -i \hbar \frac{d\psi(x)}{dx}
\]
where \( x \) is position and \( \psi \) is a wavefunction.
**(a)** Find the commutator \([ \hat{X}, \hat{P} ]\).
Consider the case of a particle of mass \( m \) in a 1-D box of length \( L \), where the wavefunctions are:
\[
\psi_n(x) =
\begin{cases}
\sqrt{\frac{2}{L}} \sin(k_n x), & 0 < x < L \\
0, & \text{otherwise}
\end{cases}
\]
\[
k_n = \frac{n \pi}{L}, \quad n \in \mathbb{Z}, \quad n > 0
\]
**(b)** Show that \( \psi_n \) is an eigenfunction of the kinetic energy operator \( \frac{\hat{P}^2}{2m} \). What is the corresponding eigenvalue?
**(c)** Find \( \langle \hat{X} \rangle \).
**(d)** Find \( \langle \hat{P} \rangle \).
**(e)** Find \( \langle \hat{P}^2 \rangle \).](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F6f6d2f58-ebc5-487b-abb4-91cd16bfc1c1%2F5b98ebfb-3b99-494e-aebd-be97e1ef777c%2Fyiyd4yl_processed.png&w=3840&q=75)
Transcribed Image Text:**Problem 3**:
Let \( \hat{X} \) and \( \hat{P} \) be the position and linear momentum operators of a single particle, respectively. The corresponding representations in one-dimensional position space are:
\[
\hat{X} \psi = x \psi(x)
\]
\[
\hat{P} \psi = -i \hbar \frac{d\psi(x)}{dx}
\]
where \( x \) is position and \( \psi \) is a wavefunction.
**(a)** Find the commutator \([ \hat{X}, \hat{P} ]\).
Consider the case of a particle of mass \( m \) in a 1-D box of length \( L \), where the wavefunctions are:
\[
\psi_n(x) =
\begin{cases}
\sqrt{\frac{2}{L}} \sin(k_n x), & 0 < x < L \\
0, & \text{otherwise}
\end{cases}
\]
\[
k_n = \frac{n \pi}{L}, \quad n \in \mathbb{Z}, \quad n > 0
\]
**(b)** Show that \( \psi_n \) is an eigenfunction of the kinetic energy operator \( \frac{\hat{P}^2}{2m} \). What is the corresponding eigenvalue?
**(c)** Find \( \langle \hat{X} \rangle \).
**(d)** Find \( \langle \hat{P} \rangle \).
**(e)** Find \( \langle \hat{P}^2 \rangle \).
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)