3. Let g (0, ∞) → R and for every n ≥ 1, fn: (0, ∞) → R. For every 0 < t < T < ∞, assume that g € Roc[t, T] and for every n ≥ 1, fn € Rioc[t, T]. If for every n ≥ 1, |fn| ≤ 9, fnf uniformly on every compact subset of (0,00) and g = R(0, 0), prove that lim Soto Jm.² ² Sn = √ ² ² 1 f.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
3. Let \( g : (0, \infty) \to \mathbb{R} \) and for every \( n \geq 1 \), \( f_n : (0, \infty) \to \mathbb{R} \). For every \( 0 < t < T < \infty \), assume that \( g \in \mathcal{R}_{\text{loc}}[t, T] \) and for every \( n \geq 1 \), \( f_n \in \mathcal{R}_{\text{loc}}[t, T] \). If for every \( n \geq 1 \), \( |f_n| \leq g \), \( f_n \to f \) uniformly on every compact subset of \( (0, \infty) \) and \( g \in \mathcal{R}(0, \infty) \), prove that

\[
\lim_{n \to \infty} \int_{0}^{\infty} f_n = \int_{0}^{\infty} f.
\]
Transcribed Image Text:3. Let \( g : (0, \infty) \to \mathbb{R} \) and for every \( n \geq 1 \), \( f_n : (0, \infty) \to \mathbb{R} \). For every \( 0 < t < T < \infty \), assume that \( g \in \mathcal{R}_{\text{loc}}[t, T] \) and for every \( n \geq 1 \), \( f_n \in \mathcal{R}_{\text{loc}}[t, T] \). If for every \( n \geq 1 \), \( |f_n| \leq g \), \( f_n \to f \) uniformly on every compact subset of \( (0, \infty) \) and \( g \in \mathcal{R}(0, \infty) \), prove that \[ \lim_{n \to \infty} \int_{0}^{\infty} f_n = \int_{0}^{\infty} f. \]
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,