3. In a gas turbine plant air is compressed from 1.01 bar and 15 °C through a pressure ratio of 5. It is then heated in a combustion chamber at constant pressure to a temperature of 700 °C and expanded to atmospheric pressure in a turbine. The isentropic efficiencies of compression and expansion are respectively 0.8 and 0.85. Calculate (a) the cycle efficiency and (b) the work ratio. Assume that the properties of air do not change with temperature and may be taken as Cp = 1.005 kJ/kg K and y = 1.4.
3. In a gas turbine plant air is compressed from 1.01 bar and 15 °C through a pressure ratio of 5. It is then heated in a combustion chamber at constant pressure to a temperature of 700 °C and expanded to atmospheric pressure in a turbine. The isentropic efficiencies of compression and expansion are respectively 0.8 and 0.85. Calculate (a) the cycle efficiency and (b) the work ratio. Assume that the properties of air do not change with temperature and may be taken as Cp = 1.005 kJ/kg K and y = 1.4.
Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
Related questions
Question

Transcribed Image Text:3. In a gas turbine plant air is compressed from 1.01 bar and 15 °C through a pressure ratio
of 5. It is then heated in a combustion chamber at constant pressure to a temperature of
700 °C and expanded to atmospheric pressure in a turbine. The isentropic efficiencies of
compression and expansion are respectively 0.8 and 0.85. Calculate (a) the cycle
efficiency and (b) the work ratio. Assume that the properties of air do not change with
temperature and may be taken as Cp = 1.005 kJ/kg K and y = 1.4.
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 3 images

Recommended textbooks for you

Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press

Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON

Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education

Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press

Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON

Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education

Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY

Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning

Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY