3. Given f(x)dx integrals. You show the definite integral properties for these evaluations. 4 and f(x)dx -1 determine the values of the following definite %3D (a) So f(x)dr (b) f(x)dx (c) 4f(x)dx

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
Solve.
**Problem Statement:**

Given the definite integrals:

\[
\int_{0}^{3} f(x) \, dx = 4 \quad \text{and} \quad \int_{3}^{6} f(x) \, dx = -1
\]

Determine the values of the following definite integrals. Use the definite integral properties for these evaluations.

**Questions:**

(a) \(\int_{0}^{6} f(x) \, dx\)

(b) \(\int_{3}^{0} f(x) \, dx\)

(c) \(\int_{3}^{6} 4f(x) \, dx\)

**Solution Approach:**

To solve these problems, we will use the properties of definite integrals:

- **Additivity Property:** If \(\int_{a}^{b} f(x) \, dx = A\) and \(\int_{b}^{c} f(x) \, dx = B\), then \(\int_{a}^{c} f(x) \, dx = A + B\).

- **Reversal of Limits:** \(\int_{b}^{a} f(x) \, dx = - \int_{a}^{b} f(x) \, dx\).

- **Scaling Rule:** \(\int_{a}^{b} c \cdot f(x) \, dx = c \cdot \int_{a}^{b} f(x) \, dx\), where \(c\) is a constant.
Transcribed Image Text:**Problem Statement:** Given the definite integrals: \[ \int_{0}^{3} f(x) \, dx = 4 \quad \text{and} \quad \int_{3}^{6} f(x) \, dx = -1 \] Determine the values of the following definite integrals. Use the definite integral properties for these evaluations. **Questions:** (a) \(\int_{0}^{6} f(x) \, dx\) (b) \(\int_{3}^{0} f(x) \, dx\) (c) \(\int_{3}^{6} 4f(x) \, dx\) **Solution Approach:** To solve these problems, we will use the properties of definite integrals: - **Additivity Property:** If \(\int_{a}^{b} f(x) \, dx = A\) and \(\int_{b}^{c} f(x) \, dx = B\), then \(\int_{a}^{c} f(x) \, dx = A + B\). - **Reversal of Limits:** \(\int_{b}^{a} f(x) \, dx = - \int_{a}^{b} f(x) \, dx\). - **Scaling Rule:** \(\int_{a}^{b} c \cdot f(x) \, dx = c \cdot \int_{a}^{b} f(x) \, dx\), where \(c\) is a constant.
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning