3. For all positive integer n, We use indoctior For n=1 $1²=1
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
Use the induction method
![For all positive integers \( n \),
\[
\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}.
\]
We use induction on \( n \).
For \( n = 1 \),
\[
\sum_{k=1}^{1} k^2 = 1 = \frac{1(2)(3)}{6}.
\]](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fad4ca8bb-6fc2-4881-9132-73064896bc20%2F2f86880b-e1e7-4545-9118-28249609830c%2F0c9p41c_processed.jpeg&w=3840&q=75)
Transcribed Image Text:For all positive integers \( n \),
\[
\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}.
\]
We use induction on \( n \).
For \( n = 1 \),
\[
\sum_{k=1}^{1} k^2 = 1 = \frac{1(2)(3)}{6}.
\]
Expert Solution

Step 1
Step by step
Solved in 2 steps with 1 images

Recommended textbooks for you

Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated

Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education

Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY

Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated

Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education

Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY

Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,

