3. Find the Laplace transform of r(t) = sin kt and x(t): definitions sin kt = 1 ( (eikt - e-ikt), coskt = 2 = cos kt using the 2i Check your answers in the table. (eikt + e-ikt).

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Please do 3
# 3.1 Definition and Basic Properties

### Exercises

2. Use the definition of the Laplace transform to find the transform of \( x(t) = e^{-3t} H(t - 2) \).

3. Find the Laplace transform of \( x(t) = \sin kt \) and \( x(t) = \cos kt \) using the definitions
   \[
   \sin kt = \frac{1}{2i} (e^{ikt} - e^{-ikt}), \quad \cos kt = \frac{1}{2}(e^{ikt} + e^{-ikt}).
   \]
   Check your answers in the table.

4. Find the Laplace transform of the hyperbolic functions \( x(t) = \sinh kt \) and \( x(t) = \cosh kt \) using the definitions
   \[
   \sinh kt = \frac{1}{2}(e^{kt} - e^{-kt}), \quad \cosh kt = \frac{1}{2}(e^{kt} + e^{-kt}).
   \]
   Check your answers in the table.

5. Derive the operational formulas (3.4) and (3.5) directly from the definition.
   **Hint:** Change variables in the integrals.

6. Use the definition of the Laplace transform to show that
   \[
   \mathcal{L}[f(t)H(t - a)] = e^{-as}\mathcal{L}[f(t + a)].
   \]

7. Use the preceding exercise to compute \( \mathcal{L}[t^2 H(t - 1)] \).

8. Find the Laplace transform of the following functions.
   a) \( 6 + 5e^{-2t} + te^{3t} \).

   b) \( tH(t - 3) \).

   c) \( \cos 5t \).

   d) \( \sin(2t + \pi) \).

   e) \( 3e^{-t} \cosh t \).

   f) \( H(t - \pi) \cos(t - \pi) \).

9. Find the inverse transform of the following functions.
Transcribed Image Text:# 3.1 Definition and Basic Properties ### Exercises 2. Use the definition of the Laplace transform to find the transform of \( x(t) = e^{-3t} H(t - 2) \). 3. Find the Laplace transform of \( x(t) = \sin kt \) and \( x(t) = \cos kt \) using the definitions \[ \sin kt = \frac{1}{2i} (e^{ikt} - e^{-ikt}), \quad \cos kt = \frac{1}{2}(e^{ikt} + e^{-ikt}). \] Check your answers in the table. 4. Find the Laplace transform of the hyperbolic functions \( x(t) = \sinh kt \) and \( x(t) = \cosh kt \) using the definitions \[ \sinh kt = \frac{1}{2}(e^{kt} - e^{-kt}), \quad \cosh kt = \frac{1}{2}(e^{kt} + e^{-kt}). \] Check your answers in the table. 5. Derive the operational formulas (3.4) and (3.5) directly from the definition. **Hint:** Change variables in the integrals. 6. Use the definition of the Laplace transform to show that \[ \mathcal{L}[f(t)H(t - a)] = e^{-as}\mathcal{L}[f(t + a)]. \] 7. Use the preceding exercise to compute \( \mathcal{L}[t^2 H(t - 1)] \). 8. Find the Laplace transform of the following functions. a) \( 6 + 5e^{-2t} + te^{3t} \). b) \( tH(t - 3) \). c) \( \cos 5t \). d) \( \sin(2t + \pi) \). e) \( 3e^{-t} \cosh t \). f) \( H(t - \pi) \cos(t - \pi) \). 9. Find the inverse transform of the following functions.
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,