3. Find the function M(x, y) such that M(x, 0) = e¯ª and the differential equation M(x,y) dx + (sin x cos y - xy - e)dy = 0 is exact. sin x sin y + y² +e=² cos x sin y + y² + e²¯ X cos x sin y - y² + e cos x sin y - y² + e-ª O sin x sin y - y² + e-¯

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

show complete solution

3. Find the function M(x, y) such that M(x, 0) = e¯ª and the differential equation
M(x,y) dx + (sin x cos y - xy - e¯³)dy = 0 is exact.
sin x sin y + y² +e=²
cos x sin y + y² + e²¯
X
cos x sin y - y² + e
cos x sin y - y² + e¯ª
O sin x sin y - y² + e-¯
Transcribed Image Text:3. Find the function M(x, y) such that M(x, 0) = e¯ª and the differential equation M(x,y) dx + (sin x cos y - xy - e¯³)dy = 0 is exact. sin x sin y + y² +e=² cos x sin y + y² + e²¯ X cos x sin y - y² + e cos x sin y - y² + e¯ª O sin x sin y - y² + e-¯
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,