3. Find all solutions: 2cos (2x -) + (2x -") 3 = 4 in the interval [0,2n) %3D 6.

Trigonometry (11th Edition)
11th Edition
ISBN:9780134217437
Author:Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Publisher:Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Chapter1: Trigonometric Functions
Section: Chapter Questions
Problem 1RE: 1. Give the measures of the complement and the supplement of an angle measuring 35°.
icon
Related questions
Question

Show every step you used to get the answer

**Problem:**

Find all solutions for the equation \( 2\cos\left(2x - \frac{\pi}{6}\right) + 3 = 4 \) within the interval \([0, 2\pi)\).

**Solution Approach:**

1. **Rearrange the Equation:**
   Start by isolating the cosine function:
   \[
   2\cos\left(2x - \frac{\pi}{6}\right) = 1
   \]
   Divide by 2:
   \[
   \cos\left(2x - \frac{\pi}{6}\right) = \frac{1}{2}
   \]

2. **Solve for the Angle:**
   The cosine of an angle is \(\frac{1}{2}\) at specific standard angles. Within one full rotation (0 to \(2\pi\)), \(\cos(\theta) = \frac{1}{2}\) when:
   \[
   \theta = \frac{\pi}{3} \quad \text{or} \quad \theta = \frac{5\pi}{3}
   \]

3. **Express in Terms of \(x\):**
   Set \(2x - \frac{\pi}{6}\) equal to each of the angles found:
   - \( 2x - \frac{\pi}{6} = \frac{\pi}{3} \)
   - \( 2x - \frac{\pi}{6} = \frac{5\pi}{3} \)

   Solve each equation for \(x\):
   - For \(2x - \frac{\pi}{6} = \frac{\pi}{3} \):
     \[
     2x = \frac{\pi}{3} + \frac{\pi}{6} = \frac{2\pi}{6} + \frac{\pi}{6} = \frac{3\pi}{6} = \frac{\pi}{2}
     \]
     \[
     x = \frac{\pi}{4}
     \]

   - For \(2x - \frac{\pi}{6} = \frac{5\pi}{3} \):
     \[
     2x = \frac{5\pi}{3} + \frac{\pi}{6} = \frac{10\pi}{6} + \frac
Transcribed Image Text:**Problem:** Find all solutions for the equation \( 2\cos\left(2x - \frac{\pi}{6}\right) + 3 = 4 \) within the interval \([0, 2\pi)\). **Solution Approach:** 1. **Rearrange the Equation:** Start by isolating the cosine function: \[ 2\cos\left(2x - \frac{\pi}{6}\right) = 1 \] Divide by 2: \[ \cos\left(2x - \frac{\pi}{6}\right) = \frac{1}{2} \] 2. **Solve for the Angle:** The cosine of an angle is \(\frac{1}{2}\) at specific standard angles. Within one full rotation (0 to \(2\pi\)), \(\cos(\theta) = \frac{1}{2}\) when: \[ \theta = \frac{\pi}{3} \quad \text{or} \quad \theta = \frac{5\pi}{3} \] 3. **Express in Terms of \(x\):** Set \(2x - \frac{\pi}{6}\) equal to each of the angles found: - \( 2x - \frac{\pi}{6} = \frac{\pi}{3} \) - \( 2x - \frac{\pi}{6} = \frac{5\pi}{3} \) Solve each equation for \(x\): - For \(2x - \frac{\pi}{6} = \frac{\pi}{3} \): \[ 2x = \frac{\pi}{3} + \frac{\pi}{6} = \frac{2\pi}{6} + \frac{\pi}{6} = \frac{3\pi}{6} = \frac{\pi}{2} \] \[ x = \frac{\pi}{4} \] - For \(2x - \frac{\pi}{6} = \frac{5\pi}{3} \): \[ 2x = \frac{5\pi}{3} + \frac{\pi}{6} = \frac{10\pi}{6} + \frac
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Trigonometry (11th Edition)
Trigonometry (11th Edition)
Trigonometry
ISBN:
9780134217437
Author:
Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Publisher:
PEARSON
Trigonometry (MindTap Course List)
Trigonometry (MindTap Course List)
Trigonometry
ISBN:
9781305652224
Author:
Charles P. McKeague, Mark D. Turner
Publisher:
Cengage Learning
Algebra and Trigonometry
Algebra and Trigonometry
Trigonometry
ISBN:
9781938168376
Author:
Jay Abramson
Publisher:
OpenStax
Trigonometry (MindTap Course List)
Trigonometry (MindTap Course List)
Trigonometry
ISBN:
9781337278461
Author:
Ron Larson
Publisher:
Cengage Learning