3. Evaluate I° + dz by taking a regular partition of an appropriate interval, using the right endpoint of each subinterval and taking a limit

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
**Problem 3: Evaluate the Integral**

Evaluate the integral \(\int_{2}^{4} (x^3 + x^2) \, dx\) by taking a regular partition of an appropriate interval, using the right endpoint of each subinterval, and taking a limit.

**Explanation:**

To solve this problem, you divide the interval [2, 4] into \(n\) equal subintervals. The width of each subinterval \(\Delta x\) is given by:

\[
\Delta x = \frac{4 - 2}{n} = \frac{2}{n}
\]

The right endpoint of each subinterval is:

\[
x_i = 2 + i \frac{2}{n} \quad \text{for} \quad i = 1, 2, \ldots, n
\]

The Riemann sum for this integral using the right endpoints is:

\[
\sum_{i=1}^{n} \left(\left(x_i^3 + x_i^2\right) \Delta x\right)
\]

Substitute \(x_i\) and \(\Delta x\):

\[
= \sum_{i=1}^{n} \left(\left(2 + i \frac{2}{n}\right)^3 + \left(2 + i \frac{2}{n}\right)^2\right) \frac{2}{n}
\]

Take the limit as \(n \to \infty\):

\[
\lim_{n \to \infty} \sum_{i=1}^{n} \left(\left(2 + i \frac{2}{n}\right)^3 + \left(2 + i \frac{2}{n}\right)^2\right) \frac{2}{n}
\]

This expression evaluates to the definite integral \(\int_{2}^{4} (x^3 + x^2) \, dx\). 

To solve this using the Fundamental Theorem of Calculus:

Find the antiderivative of \(x^3 + x^2\):

\[
F(x) = \frac{x^4}{4} + \frac{x^3}{3}
\]

Evaluate \(F(x)\) from 2 to 4:

\[
F(4) - F(2) = \left(\frac{4^4}{4
Transcribed Image Text:**Problem 3: Evaluate the Integral** Evaluate the integral \(\int_{2}^{4} (x^3 + x^2) \, dx\) by taking a regular partition of an appropriate interval, using the right endpoint of each subinterval, and taking a limit. **Explanation:** To solve this problem, you divide the interval [2, 4] into \(n\) equal subintervals. The width of each subinterval \(\Delta x\) is given by: \[ \Delta x = \frac{4 - 2}{n} = \frac{2}{n} \] The right endpoint of each subinterval is: \[ x_i = 2 + i \frac{2}{n} \quad \text{for} \quad i = 1, 2, \ldots, n \] The Riemann sum for this integral using the right endpoints is: \[ \sum_{i=1}^{n} \left(\left(x_i^3 + x_i^2\right) \Delta x\right) \] Substitute \(x_i\) and \(\Delta x\): \[ = \sum_{i=1}^{n} \left(\left(2 + i \frac{2}{n}\right)^3 + \left(2 + i \frac{2}{n}\right)^2\right) \frac{2}{n} \] Take the limit as \(n \to \infty\): \[ \lim_{n \to \infty} \sum_{i=1}^{n} \left(\left(2 + i \frac{2}{n}\right)^3 + \left(2 + i \frac{2}{n}\right)^2\right) \frac{2}{n} \] This expression evaluates to the definite integral \(\int_{2}^{4} (x^3 + x^2) \, dx\). To solve this using the Fundamental Theorem of Calculus: Find the antiderivative of \(x^3 + x^2\): \[ F(x) = \frac{x^4}{4} + \frac{x^3}{3} \] Evaluate \(F(x)\) from 2 to 4: \[ F(4) - F(2) = \left(\frac{4^4}{4
Expert Solution
steps

Step by step

Solved in 4 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,