3. Estimate / (x* – 18x +107x – 207) dx using a left-hand Riemann sum with 4 subintervals of equal width.

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
### Problem Statement

**3. Estimate the integral \( \int_{-2}^{6} (x^3 - 18x^2 + 107x - 207) \, dx \) using a left-hand Riemann sum with 4 subintervals of equal width.**

### Explanation

To solve this problem, we will use the left-hand Riemann sum to approximate the definite integral of the given function over the interval \([-2, 6]\). The interval will be divided into 4 equal subintervals, and the left endpoint of each subinterval will be used to evaluate the function.

1. **Determine the Width of Each Subinterval**: 
   - The total interval length is \(6 - (-2) = 8\).
   - Since there are 4 subintervals, the width \(\Delta x\) of each subinterval is \( \frac{8}{4} = 2\).

2. **Identify the Left Endpoints of Each Subinterval**:
   - Subintervals and their left endpoints:
     - \([-2, 0]\), left endpoint: \(-2\)
     - \([0, 2]\), left endpoint: \(0\)
     - \([2, 4]\), left endpoint: \(2\)
     - \([4, 6]\), left endpoint: \(4\)

3. **Evaluate the Function at Each Left Endpoint**:
   - \(f(-2) = (-2)^3 - 18(-2)^2 + 107(-2) - 207\)
   - \(f(0) = (0)^3 - 18(0)^2 + 107(0) - 207\)
   - \(f(2) = (2)^3 - 18(2)^2 + 107(2) - 207\)
   - \(f(4) = (4)^3 - 18(4)^2 + 107(4) - 207\)

4. **Calculate the Left-Hand Riemann Sum**:
   - Riemann sum = \(\Delta x \times [f(-2) + f(0) + f(2) + f(4)]\)
   - Substitute the values to approximate the integral.

This approach provides an approximation of the area under the curve of the function from \(-2\) to
Transcribed Image Text:### Problem Statement **3. Estimate the integral \( \int_{-2}^{6} (x^3 - 18x^2 + 107x - 207) \, dx \) using a left-hand Riemann sum with 4 subintervals of equal width.** ### Explanation To solve this problem, we will use the left-hand Riemann sum to approximate the definite integral of the given function over the interval \([-2, 6]\). The interval will be divided into 4 equal subintervals, and the left endpoint of each subinterval will be used to evaluate the function. 1. **Determine the Width of Each Subinterval**: - The total interval length is \(6 - (-2) = 8\). - Since there are 4 subintervals, the width \(\Delta x\) of each subinterval is \( \frac{8}{4} = 2\). 2. **Identify the Left Endpoints of Each Subinterval**: - Subintervals and their left endpoints: - \([-2, 0]\), left endpoint: \(-2\) - \([0, 2]\), left endpoint: \(0\) - \([2, 4]\), left endpoint: \(2\) - \([4, 6]\), left endpoint: \(4\) 3. **Evaluate the Function at Each Left Endpoint**: - \(f(-2) = (-2)^3 - 18(-2)^2 + 107(-2) - 207\) - \(f(0) = (0)^3 - 18(0)^2 + 107(0) - 207\) - \(f(2) = (2)^3 - 18(2)^2 + 107(2) - 207\) - \(f(4) = (4)^3 - 18(4)^2 + 107(4) - 207\) 4. **Calculate the Left-Hand Riemann Sum**: - Riemann sum = \(\Delta x \times [f(-2) + f(0) + f(2) + f(4)]\) - Substitute the values to approximate the integral. This approach provides an approximation of the area under the curve of the function from \(-2\) to
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps

Blurred answer
Knowledge Booster
Definite Integral
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning