3. Determine whether the follow series converge or diverge. If it converges, find its sum. a) Σ=13*+14-n 2" +4" b) Σπ=1 en c) E=4 (√√²+1)

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Question

Determine whether the follow series converge or diverge. If it converges, find its sum.

a) ∑ ∞ 

n=1     (3^(n+1))*4^-n

b) ∑ ∞ 

n=1   2^n+4^n/e^n

c) ∑ ∞ 

n=4   (1/sqrtn-1/sqrtn+1)

**Exercise 3: Series Convergence or Divergence**

Determine whether the following series converge or diverge. If it converges, find its sum.

a) \(\sum_{n=1}^{\infty} 3^{n+1} 4^{-n}\)

b) \(\sum_{n=1}^{\infty} \frac{2^{n+4} n^2}{e^n}\)

c) \(\sum_{n=4}^{\infty} \left( \frac{1}{\sqrt{n}} - \frac{1}{\sqrt{n+1}} \right)\)
Transcribed Image Text:**Exercise 3: Series Convergence or Divergence** Determine whether the following series converge or diverge. If it converges, find its sum. a) \(\sum_{n=1}^{\infty} 3^{n+1} 4^{-n}\) b) \(\sum_{n=1}^{\infty} \frac{2^{n+4} n^2}{e^n}\) c) \(\sum_{n=4}^{\infty} \left( \frac{1}{\sqrt{n}} - \frac{1}{\sqrt{n+1}} \right)\)
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,