3. Determine the inverse Laplace transform of the given function. a) F(s) = =- c) F(s) = 7 e) F(s) = = S 2 S² +9 4-2s 2 S² +25 6 g) F(s) =²-2s +1 b) F(s) = nslation s²-25 +1 -1 4 S+2 3ssta 5s² +20 d) F(s)=- 4 f) F(s) = 3²-3 h) F(s) = 3+ s 5s²

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
3b
### Determine the Inverse Laplace Transform

Given the following Laplace-transformed functions, find their inverse Laplace transforms:

1. \(a) \quad F(s) = \frac{7}{s}\)

2. \(b) \quad F(s) = \frac{4}{s+2}\)

3. \(c) \quad F(s) = \frac{2}{s^2+9}\)

4. \(d) \quad F(s) = \frac{3s}{5s^2+20}\)

5. \(e) \quad F(s) = \frac{4-2s}{s^2+25}\)

6. \(f) \quad F(s) = \frac{4}{s^2-3}\)

7. \(g) \quad F(s) = \frac{6}{s^2-2s+1}\)

8. \(h) \quad F(s) = \frac{3+s}{5s^2}\)

These functions are represented in the s-domain and require transformation back to the time-domain. You will employ methods such as partial fraction decomposition, shifting theorems, or standard Laplace transform pairs to execute this task effectively.
Transcribed Image Text:### Determine the Inverse Laplace Transform Given the following Laplace-transformed functions, find their inverse Laplace transforms: 1. \(a) \quad F(s) = \frac{7}{s}\) 2. \(b) \quad F(s) = \frac{4}{s+2}\) 3. \(c) \quad F(s) = \frac{2}{s^2+9}\) 4. \(d) \quad F(s) = \frac{3s}{5s^2+20}\) 5. \(e) \quad F(s) = \frac{4-2s}{s^2+25}\) 6. \(f) \quad F(s) = \frac{4}{s^2-3}\) 7. \(g) \quad F(s) = \frac{6}{s^2-2s+1}\) 8. \(h) \quad F(s) = \frac{3+s}{5s^2}\) These functions are represented in the s-domain and require transformation back to the time-domain. You will employ methods such as partial fraction decomposition, shifting theorems, or standard Laplace transform pairs to execute this task effectively.
Expert Solution
steps

Step by step

Solved in 3 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,