3. Derive the ABCD constants for a line having resistance of 0.1 2/mi, reactance 0.86 2/mi, and capacitance 0.04 2/mi using long line model. What is the electrical length of the line? 4. In Problem 3, calculate the rise in voltage at the receiving end. Use a long line model and consider 400 mi of line length, the sending-end voltage being 230 kV. 5. In Problem 3, what is the SIL loading of the line?

Introductory Circuit Analysis (13th Edition)
13th Edition
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:Robert L. Boylestad
Chapter1: Introduction
Section: Chapter Questions
Problem 1P: Visit your local library (at school or home) and describe the extent to which it provides literature...
icon
Related questions
Question

Please answer in short like it definitely don't reject in shorts please 

Please all subparts in short...please 

 

3. Derive the ABCD constants for a line having resistance of
0.1 2/mi, reactance 0.86 2/mi, and capacitance 0.04 2/mi
using long line model. What is the electrical length of the line?
4. In Problem 3, calculate the rise in voltage at the receiving
end. Use a long line model and consider 400 mi of line length,
the sending-end voltage being 230 kV.
5. In Problem 3, what is the SIL loading of the line?
Transcribed Image Text:3. Derive the ABCD constants for a line having resistance of 0.1 2/mi, reactance 0.86 2/mi, and capacitance 0.04 2/mi using long line model. What is the electrical length of the line? 4. In Problem 3, calculate the rise in voltage at the receiving end. Use a long line model and consider 400 mi of line length, the sending-end voltage being 230 kV. 5. In Problem 3, what is the SIL loading of the line?
Expert Solution
steps

Step by step

Solved in 4 steps

Blurred answer
Knowledge Booster
Basic Signals and Its Properties
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Introductory Circuit Analysis (13th Edition)
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:
9780133923605
Author:
Robert L. Boylestad
Publisher:
PEARSON
Delmar's Standard Textbook Of Electricity
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:
9781337900348
Author:
Stephen L. Herman
Publisher:
Cengage Learning
Programmable Logic Controllers
Programmable Logic Controllers
Electrical Engineering
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education
Fundamentals of Electric Circuits
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:
9780078028229
Author:
Charles K Alexander, Matthew Sadiku
Publisher:
McGraw-Hill Education
Electric Circuits. (11th Edition)
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:
9780134746968
Author:
James W. Nilsson, Susan Riedel
Publisher:
PEARSON
Engineering Electromagnetics
Engineering Electromagnetics
Electrical Engineering
ISBN:
9780078028151
Author:
Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:
Mcgraw-hill Education,