3. Define ln(x) = fidu. Fix x € (-1,1). Use u-substitution to prove that Hint: Use 4 Use the Corall x -X [ ²₁ — —_-, dt = in (1 + ²). ln t 1 7 dt = 1²₁² t T 1 dt + 1-t CE 1 dt.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Real Analysis II
3. Define \(\ln(x) = \int_1^x \frac{1}{u} \, du\). Fix \(x \in (-1, 1)\). Use \(u\)-substitution to prove that
\[
\int_{-x}^x \frac{1}{1-t} \, dt = \ln \left( \frac{1+x}{1-x} \right).
\]

Hint: Use
\[
\int_{-x}^x \frac{1}{1-t} \, dt = \int_{-x}^0 \frac{1}{1-t} \, dt + \int_0^x \frac{1}{1-t} \, dt.
\]
Transcribed Image Text:3. Define \(\ln(x) = \int_1^x \frac{1}{u} \, du\). Fix \(x \in (-1, 1)\). Use \(u\)-substitution to prove that \[ \int_{-x}^x \frac{1}{1-t} \, dt = \ln \left( \frac{1+x}{1-x} \right). \] Hint: Use \[ \int_{-x}^x \frac{1}{1-t} \, dt = \int_{-x}^0 \frac{1}{1-t} \, dt + \int_0^x \frac{1}{1-t} \, dt. \]
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,