3. Dada la función "F", tal que: (4) = 1; 2F(2)=3F (3) Además: F = ax + b; luego podemos afirmar: a) F(-1) = 6 c) F(-4)= F(14) e) F(2) + F(8) = 0 b) F(3) =-2 d) F(10) = 5

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
F(x) = 2x+3
F(a) = 2 x 2+3=7
F(6) = 2 x 3 3= 9
F(a)- F(b) = 7x9 = 63
In
3. Dada la función "F", tal que:
F4 = 1; 2F2 - BF
= ax + b; luego podemos afirmar:
(x)
a
Además: F,
di
Rep
a) F-1)
c) F- 4) = F(14)
e) F2) + F(8) = 0
b) Fo --2
d) Fuo) - 5
= 6
!!
(pa
%3D
4. Sea f una función lineal tal que:
fx + 1) = 3x + 8
hallar la ordenada del punto de abscisa 8.
a) 13
d) 15
b) 1
e) 18
c) 29
5. Sea f una función definida por:
f= {(a; b), (3; c), (1; 3), (2b; 4)}
tx) = x - 2a
hallar "abc"
Transcribed Image Text:F(x) = 2x+3 F(a) = 2 x 2+3=7 F(6) = 2 x 3 3= 9 F(a)- F(b) = 7x9 = 63 In 3. Dada la función "F", tal que: F4 = 1; 2F2 - BF = ax + b; luego podemos afirmar: (x) a Además: F, di Rep a) F-1) c) F- 4) = F(14) e) F2) + F(8) = 0 b) Fo --2 d) Fuo) - 5 = 6 !! (pa %3D 4. Sea f una función lineal tal que: fx + 1) = 3x + 8 hallar la ordenada del punto de abscisa 8. a) 13 d) 15 b) 1 e) 18 c) 29 5. Sea f una función definida por: f= {(a; b), (3; c), (1; 3), (2b; 4)} tx) = x - 2a hallar "abc"
Expert Solution
steps

Step by step

Solved in 4 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,