3. Compute each matrix sum or product if it is defined. If an expression is undefined, explain why. Let 2 2 3 4 A = -1 B = 0 1 1 2 1 -5 6 -- 2² C = -- --8 [9] D = E = 1 2 2 (a) A - 2B (b) 5E - C (c) DB -3 (d) EC

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
100%
### Matrix Operations

#### Problem Statement

Compute each matrix sum or product if it is defined. If an expression is undefined, explain why.

Given matrices:
\[ A = \begin{bmatrix} 1 & 2 & -3 \\ 0 & 1 & 1 \end{bmatrix} \]
\[ B = \begin{bmatrix} 2 & 3 & 1 \\ 1 & 2 & -3 \end{bmatrix} \]
\[ C = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \]
\[ D = \begin{bmatrix} -5 & 6 \\ 2 & -1 \end{bmatrix} \]
\[ E = \begin{bmatrix} 3 \\ 0 \end{bmatrix} \]

### Questions

(a) \( A - 2B \)

(b) \( 5E - C \)

(c) \( DB \)

(d) \( EC \)

### Detailed Explanation:

**(a) A - 2B**:
- **Matrix A** is a 2x3 matrix.
- **Matrix B** is a 2x3 matrix as well.
- First, compute \(2B\) (scalar multiplication of matrix B by 2):
\[ 2B = \begin{bmatrix} 4 & 6 & 2 \\ 2 & 4 & -6 \end{bmatrix} \]
- Then, subtract 2B from A:
\[ A - 2B = \begin{bmatrix} 1 & 2 & -3 \\ 0 & 1 & 1 \end{bmatrix} - \begin{bmatrix} 4 & 6 & 2 \\ 2 & 4 & -6 \end{bmatrix} = \begin{bmatrix} 1-4 & 2-6 & -3-2 \\ 0-2 & 1-4 & 1+6 \end{bmatrix} = \begin{bmatrix} -3 & -4 & -5 \\ -2 & -3 & 7 \end{bmatrix} \]

**(b) 5E - C**:
- **Matrix E** is a 2x1 vector.
- **Matrix C** is a 2x2 matrix.
- Compute \(
Transcribed Image Text:### Matrix Operations #### Problem Statement Compute each matrix sum or product if it is defined. If an expression is undefined, explain why. Given matrices: \[ A = \begin{bmatrix} 1 & 2 & -3 \\ 0 & 1 & 1 \end{bmatrix} \] \[ B = \begin{bmatrix} 2 & 3 & 1 \\ 1 & 2 & -3 \end{bmatrix} \] \[ C = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \] \[ D = \begin{bmatrix} -5 & 6 \\ 2 & -1 \end{bmatrix} \] \[ E = \begin{bmatrix} 3 \\ 0 \end{bmatrix} \] ### Questions (a) \( A - 2B \) (b) \( 5E - C \) (c) \( DB \) (d) \( EC \) ### Detailed Explanation: **(a) A - 2B**: - **Matrix A** is a 2x3 matrix. - **Matrix B** is a 2x3 matrix as well. - First, compute \(2B\) (scalar multiplication of matrix B by 2): \[ 2B = \begin{bmatrix} 4 & 6 & 2 \\ 2 & 4 & -6 \end{bmatrix} \] - Then, subtract 2B from A: \[ A - 2B = \begin{bmatrix} 1 & 2 & -3 \\ 0 & 1 & 1 \end{bmatrix} - \begin{bmatrix} 4 & 6 & 2 \\ 2 & 4 & -6 \end{bmatrix} = \begin{bmatrix} 1-4 & 2-6 & -3-2 \\ 0-2 & 1-4 & 1+6 \end{bmatrix} = \begin{bmatrix} -3 & -4 & -5 \\ -2 & -3 & 7 \end{bmatrix} \] **(b) 5E - C**: - **Matrix E** is a 2x1 vector. - **Matrix C** is a 2x2 matrix. - Compute \(
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,