3. BCLet z(t) z(f) be the solution of z" + a(t)z' + b(t)z = 0, z"+a(t)z'+b(t)z= 0, where a(t) a(t) ai

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Please show work thanks :)

3. BCLet z(t) z(t) be the solution of
z" + a(t)z' + b(t)z = 0,
z "+a(t)z'+b(t)z= 0, where a(t) a(t) and
b(t) b(t) are continuous functions on I. Show
that y(t) = u(t)z(t) y(t)=u(t)z(t) solves
the ODE y" + a(t)y' + b(t)y= f(t)
y"+a(t)y'+b(t)y=f(t) – for some function f
- when u(t) "(1) is a solution of
zu" + (2z' + az)u' = f.
zu"+(2 z'+az)u'= f .
Transcribed Image Text:3. BCLet z(t) z(t) be the solution of z" + a(t)z' + b(t)z = 0, z "+a(t)z'+b(t)z= 0, where a(t) a(t) and b(t) b(t) are continuous functions on I. Show that y(t) = u(t)z(t) y(t)=u(t)z(t) solves the ODE y" + a(t)y' + b(t)y= f(t) y"+a(t)y'+b(t)y=f(t) – for some function f - when u(t) "(1) is a solution of zu" + (2z' + az)u' = f. zu"+(2 z'+az)u'= f .
Expert Solution
Step 1

  Given,                   z''+a(t)z'+b(t)z=0          ...(1)Where a(t) and b(t) are continuous functions on I.To prove that y(t)=u(t)z(t) solves y''+a(t)y'+b(t)y=f(t) for some function f(t), when u(t) is a solution of                                  zu''+(2z'+az)u'=f.

steps

Step by step

Solved in 2 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,