3. A simple connecting rod mechanism has a rod 250mm long and a crank radius of 75 mm. The connecting rod has a mass of 1.5kg, its centre of gravity is 75mm from the large end and it has a radius of gyration about the centre of gravity of 100mm. When the crank angle is 30° and the crankshaft speed is 3000rpm clockwise: (a) (i) Show by kinematic analysis that the angular acceleration of the connecting rod is 13,940 rad/s² (clockwise) (ii) Show also that the acceleration of the centre of gravity (C) in the X and Y direction is respectively, fcx = 6759m/s² (to the right) and fcy = 2590.8m/s² (downwards). Hence, find the magnitude and direction of the forces acting on the frame of the engine due to the inertia of the connecting rod as follows: (b) The force exerted by the cylinder wall on the piston at B (c) The force on the main bearing at O (d) The torque input or output at the crank B Figure 3. Connecting rod mechanism C A 30° O

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question
3. A simple connecting rod mechanism has a rod 250mm long and a crank radius of 75 mm. The connecting rod
has a mass of 1.5kg, its centre of gravity is 75mm from the large end and it has a radius of gyration about the
centre of gravity of 100mm.
When the crank angle is 30° and the crankshaft speed is 3000rpm clockwise:
(a) (i) Show by kinematic analysis that the angular acceleration of the connecting rod is 13,940 rad/s²
(clockwise)
(ii) Show also that the acceleration of the centre of gravity (C) in the X and Y direction is respectively, fcx
= 6759m/s² (to the right) and fcy = 2590.8m/s² (downwards).
Hence, find the magnitude and direction of the forces acting on the frame of the engine due to the inertia of
the connecting rod as follows:
(b) The force exerted by the cylinder wall on the piston at B
(c) The force on the main bearing at O
(d) The torque input or output at the crank
B
Figure 3. Connecting rod mechanism
C
A
30°
O
Transcribed Image Text:3. A simple connecting rod mechanism has a rod 250mm long and a crank radius of 75 mm. The connecting rod has a mass of 1.5kg, its centre of gravity is 75mm from the large end and it has a radius of gyration about the centre of gravity of 100mm. When the crank angle is 30° and the crankshaft speed is 3000rpm clockwise: (a) (i) Show by kinematic analysis that the angular acceleration of the connecting rod is 13,940 rad/s² (clockwise) (ii) Show also that the acceleration of the centre of gravity (C) in the X and Y direction is respectively, fcx = 6759m/s² (to the right) and fcy = 2590.8m/s² (downwards). Hence, find the magnitude and direction of the forces acting on the frame of the engine due to the inertia of the connecting rod as follows: (b) The force exerted by the cylinder wall on the piston at B (c) The force on the main bearing at O (d) The torque input or output at the crank B Figure 3. Connecting rod mechanism C A 30° O
Expert Solution
steps

Step by step

Solved in 3 steps with 2 images

Blurred answer
Knowledge Booster
Dynamics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY