3. (a) Show that x = 0 is a regular singular point for the Laguerre equation xy" + (1 − x)y' + 2y = 0, and using the Frobenius method, show that both roots of the indicial equation are equal to zero. Show that the corresponding series for the solution y = Σ anx" is a polynomial and find its explicit form. n=0 (b) Give an example of a second order linear differential equation with polynomial coefficients possessing exactly four singular points such that the points x = ±2 are regular singular points and the points x = ±1 are irregular singular points. Justify your example. (c) Justify the statement: If the equation y" + p(x)y' + q(x)y = 0 admits a solution y = x(ex-e-2x), then the point x = 0 cannot be an ordinary point of the equation.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
3. (a) Show that x = 0 is a regular singular point for the Laguerre equation
xy" + (1 − x)y' + 2y = 0,
and using the Frobenius method, show that both roots of the indicial equation are
equal to zero. Show that the corresponding series for the solution y = Σ anx" is
a polynomial and find its explicit form.
n=0
(b) Give an example of a second order linear differential equation with polynomial
coefficients possessing exactly four singular points such that the points x = ±2 are
regular singular points and the points x = ±1 are irregular singular points. Justify
your example.
(c) Justify the statement: If the equation y" + p(x)y' + q(x)y = 0 admits a solution
y = x(ex-e-2x), then the point x = 0 cannot be an ordinary point of the equation.
Transcribed Image Text:3. (a) Show that x = 0 is a regular singular point for the Laguerre equation xy" + (1 − x)y' + 2y = 0, and using the Frobenius method, show that both roots of the indicial equation are equal to zero. Show that the corresponding series for the solution y = Σ anx" is a polynomial and find its explicit form. n=0 (b) Give an example of a second order linear differential equation with polynomial coefficients possessing exactly four singular points such that the points x = ±2 are regular singular points and the points x = ±1 are irregular singular points. Justify your example. (c) Justify the statement: If the equation y" + p(x)y' + q(x)y = 0 admits a solution y = x(ex-e-2x), then the point x = 0 cannot be an ordinary point of the equation.
Expert Solution
steps

Step by step

Solved in 2 steps with 3 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,