3. A mass of 0.5 kg hangs from a spring of negligible mass. When an additional mass of 0.2 kg is attached to the 0.5 kg, the spring is stretched an additional 4 cm. When the 0.2 kg mass is abruptly removed, the amplitude of the resultant vibrations of the 0.5 kg mass is observed to decrease to 1/e its original amplitude in 1 second. (Note: The force on a mass due to gravity = 9.8 x mass.) The resultant displacement is given by the equation: x = A et cos(wat +ø) where at time t = 0, the decay in amplitude is assumed to be negligible and the displacement x is found to be 3.5cm. Calculate: a). The spring constant, S. b). The mechanical resistance, Rm- c). The frequency of damped oscillation, cod. d). The phase constant, Ø.

College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
icon
Related questions
icon
Concept explainers
Topic Video
Question
3. A mass of 0.5 kg hangs from a spring of negligible mass. When an additional mass
of 0.2 kg is attached to the 0.5 kg, the spring is stretched an additional 4 cm.
When the 0.2 kg mass is abruptly removed, the amplitude of the resultant vibrations
of the 0.5 kg mass is observed to decrease to 1/e its original amplitude in 1 second.
(Note: The force on a mass due to gravity = 9.8 x mass.)
The resultant displacement is given by the equation:
x = A est cos(wat +ø)
where at time t = 0, the decay in amplitude is assumed to be negligible and the
displacement x is found to be 3.5cm.
Calculate:
a). The spring constant, S.
b). The mechanical resistance, Rm.
c). The frequency of damped oscillation, cod.
d). The phase constant, Ø.
Transcribed Image Text:3. A mass of 0.5 kg hangs from a spring of negligible mass. When an additional mass of 0.2 kg is attached to the 0.5 kg, the spring is stretched an additional 4 cm. When the 0.2 kg mass is abruptly removed, the amplitude of the resultant vibrations of the 0.5 kg mass is observed to decrease to 1/e its original amplitude in 1 second. (Note: The force on a mass due to gravity = 9.8 x mass.) The resultant displacement is given by the equation: x = A est cos(wat +ø) where at time t = 0, the decay in amplitude is assumed to be negligible and the displacement x is found to be 3.5cm. Calculate: a). The spring constant, S. b). The mechanical resistance, Rm. c). The frequency of damped oscillation, cod. d). The phase constant, Ø.
Expert Solution
steps

Step by step

Solved in 5 steps

Blurred answer
Knowledge Booster
Simple Harmonic Motion
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
College Physics
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics (14th Edition)
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
Introduction To Quantum Mechanics
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
Physics for Scientists and Engineers
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley
College Physics: A Strategic Approach (4th Editio…
College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON