> vy=var (y) > vz=var (z) > c(vx, vy, vz) [1] 144418.27 225582.61 14015.52 > > reg=1m (y^x) > summary(reg) Call: 1m (formula = y x) Residuals: Min -147.179 1Q Median 3Q Max -77.542 -8.385 53.611 239.163 Coefficients: Estimate Std. Error t value Pr(>|t|) 102.16744 -0.70 0.09589 (Intercept) -71.51136 1.21246 0.5 12.64 1.78e-07 *** Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 1 Residual standard error: 120.9 on 10 degrees of freedom Adjusted R-squared: 0.9352 Multiple R-squared: 0.9411, F-statistic: 159.9 on 1 and 10 DF, p-value: 1.784e-07 > mse=sum(reg $residuals^2)/10 > mse [1] 14606.97 (a) Estimate using the sample mean . (b) Estimate using the ratio estimator. (c) Estimate using the regression estimator. (d) Compute the (approximate) relative efficiency of the ratio estimator with respect to the regression estimator. 3. A corporation is interested in estimating the mean earnings from sales of color television sets at the end of a three-month period. The total earnings figures are available for all districts within the corporation for the corresponding three-month period of the previous year. A simple random sample of 12 district offices is selected from 123 offices within the corporation. Use the data in the accompanying table to estimate the mean earnings for offices within the corporation and place a bound on the error of estimation. Take Tx = 128,200. Office 1 Previous year xi Current year yi 550 610 2 720 780 3 1500 1600 4 1020 1030 5 620 600 6 980 1050 7 928 977 8 1200 1440 9 1350 1570 10 1750 2210 11 670 980 12 729 865 You may find the following R codes and outputs helpful. > x=c (550,720, 1500, 1020,620,980,928,1200,1350,1750,670,729) > y=c(610,780, 1600, 1030, 600, 1050,977, 1440, 1570, 2210,980,865) > > f=1-12/123 > mux=128200/123 > c(f,mux) [1] 0.902439 1042.276423 > mx=mean(x) > my=mean(y) > r=my/mx > z=y-r*x > mz=mean (z) > c(mx, my, mz,r) [1] 1.001417e+03 > vx=var(x) 1.142667e+03 -8.526513e-14 1.141050e+00
> vy=var (y) > vz=var (z) > c(vx, vy, vz) [1] 144418.27 225582.61 14015.52 > > reg=1m (y^x) > summary(reg) Call: 1m (formula = y x) Residuals: Min -147.179 1Q Median 3Q Max -77.542 -8.385 53.611 239.163 Coefficients: Estimate Std. Error t value Pr(>|t|) 102.16744 -0.70 0.09589 (Intercept) -71.51136 1.21246 0.5 12.64 1.78e-07 *** Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 1 Residual standard error: 120.9 on 10 degrees of freedom Adjusted R-squared: 0.9352 Multiple R-squared: 0.9411, F-statistic: 159.9 on 1 and 10 DF, p-value: 1.784e-07 > mse=sum(reg $residuals^2)/10 > mse [1] 14606.97 (a) Estimate using the sample mean . (b) Estimate using the ratio estimator. (c) Estimate using the regression estimator. (d) Compute the (approximate) relative efficiency of the ratio estimator with respect to the regression estimator. 3. A corporation is interested in estimating the mean earnings from sales of color television sets at the end of a three-month period. The total earnings figures are available for all districts within the corporation for the corresponding three-month period of the previous year. A simple random sample of 12 district offices is selected from 123 offices within the corporation. Use the data in the accompanying table to estimate the mean earnings for offices within the corporation and place a bound on the error of estimation. Take Tx = 128,200. Office 1 Previous year xi Current year yi 550 610 2 720 780 3 1500 1600 4 1020 1030 5 620 600 6 980 1050 7 928 977 8 1200 1440 9 1350 1570 10 1750 2210 11 670 980 12 729 865 You may find the following R codes and outputs helpful. > x=c (550,720, 1500, 1020,620,980,928,1200,1350,1750,670,729) > y=c(610,780, 1600, 1030, 600, 1050,977, 1440, 1570, 2210,980,865) > > f=1-12/123 > mux=128200/123 > c(f,mux) [1] 0.902439 1042.276423 > mx=mean(x) > my=mean(y) > r=my/mx > z=y-r*x > mz=mean (z) > c(mx, my, mz,r) [1] 1.001417e+03 > vx=var(x) 1.142667e+03 -8.526513e-14 1.141050e+00
MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
Related questions
Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps
Recommended textbooks for you
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman