3. 4. Consider the matrix A = 3 0 0 3 1 1 2 23 (1) Compute the determinant of A, i.e., det(A) and the state whether the matrix is singular or nonsingular. (2) Compute the adjoint of A, i.e., adj (A). If A is nonsingular, compute A-¹. Write out Rank(A).

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
3. 4. Consider the matrix
A: =
3 3
01 2
23
0
(1) Compute the determinant of A, i.e., det(A) and the state whether the matrix is
singular or nonsingular.
(2) Compute the adjoint of A, i.e., adj (A). If A is nonsingular, compute A-¹. Write
out Rank(A).
Transcribed Image Text:3. 4. Consider the matrix A: = 3 3 01 2 23 0 (1) Compute the determinant of A, i.e., det(A) and the state whether the matrix is singular or nonsingular. (2) Compute the adjoint of A, i.e., adj (A). If A is nonsingular, compute A-¹. Write out Rank(A).
Expert Solution
Step 1: Question (1)

Given, A equals open parentheses table row 3 3 1 row 0 1 2 row 0 2 3 end table close parentheses

d e t left parenthesis A right parenthesis equals 3 open vertical bar table row 1 2 row 2 3 end table close vertical bar minus 3 open vertical bar table row 0 2 row 0 3 end table close vertical bar plus 1 open vertical bar table row 0 1 row 0 2 end table close vertical bar
space space space space space space space space space equals 3 left parenthesis 3 minus 4 right parenthesis minus 3 left parenthesis 0 minus 0 right parenthesis plus 1 left parenthesis 0 minus 0 right parenthesis
space space space space space space space space space equals negative 3
space space space space space space space space space not equal to 0

d e t A equals negative 3 not equal to 0

So, matrix A is nonsingular.



steps

Step by step

Solved in 3 steps with 5 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,