3. 25(i+2)2 Σ 15 3.

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question

How do I solve #3?

**Summation Formulas and Evaluations**

The image presents summation properties and formulas to evaluate specific finite series. Here's a detailed transcription of the content:

### Summation Formulas:

1. \( \sum_{i=1}^{n} i = \frac{n(n+1)}{2} \)
2. \( \sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6} \)
3. \( \sum_{i=1}^{n} i^3 = \left(\frac{n(n+1)}{2}\right)^2 \)
4. \( \sum_{i=0}^{n} r^i = \frac{1-r^{n+1}}{1-r}, \; r \neq 1 \) (Geometric Sum)
5. \( \sum_{i=1}^{n} 1 = n \)

### Problem 6: Summation Evaluation

**Use summation properties and formula to rewrite and evaluate the sums for each of the following finite series:**

1. **\[ \sum_{k=-2}^{20} 100(k^2 - 5k + 1) \]**

   To solve, rewrite and evaluate by adjusting indices:
   
   - \( k + 2 = i \)
   - Increment k from -2 to 20 translates into incrementing i from 1 to 23.

   The expression becomes:
   
   \[
   100 \left(\sum_{i=1}^{23} (i^2 - 3i + 1)\right)
   \]

   Simplifies to:
   
   \[
   100 \left(\sum_{i=1}^{23} i^2 - 11i + 25 \right)
   \]

   Using summation formulas:
   
   \[
   100 \left( \frac{23(23+1)(2 \times 23+1)}{6} - 11 \times \frac{23(23+1)}{2} + 25 \times 23\right)
   \]

   Final result is 186300.

2. **\[ \sum_{k=12}^{20} (k^2 - 2k) \]**

   Not evaluated in the transcription.

3. **\[ \frac{\sum_{j=5}^{15} (
Transcribed Image Text:**Summation Formulas and Evaluations** The image presents summation properties and formulas to evaluate specific finite series. Here's a detailed transcription of the content: ### Summation Formulas: 1. \( \sum_{i=1}^{n} i = \frac{n(n+1)}{2} \) 2. \( \sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6} \) 3. \( \sum_{i=1}^{n} i^3 = \left(\frac{n(n+1)}{2}\right)^2 \) 4. \( \sum_{i=0}^{n} r^i = \frac{1-r^{n+1}}{1-r}, \; r \neq 1 \) (Geometric Sum) 5. \( \sum_{i=1}^{n} 1 = n \) ### Problem 6: Summation Evaluation **Use summation properties and formula to rewrite and evaluate the sums for each of the following finite series:** 1. **\[ \sum_{k=-2}^{20} 100(k^2 - 5k + 1) \]** To solve, rewrite and evaluate by adjusting indices: - \( k + 2 = i \) - Increment k from -2 to 20 translates into incrementing i from 1 to 23. The expression becomes: \[ 100 \left(\sum_{i=1}^{23} (i^2 - 3i + 1)\right) \] Simplifies to: \[ 100 \left(\sum_{i=1}^{23} i^2 - 11i + 25 \right) \] Using summation formulas: \[ 100 \left( \frac{23(23+1)(2 \times 23+1)}{6} - 11 \times \frac{23(23+1)}{2} + 25 \times 23\right) \] Final result is 186300. 2. **\[ \sum_{k=12}^{20} (k^2 - 2k) \]** Not evaluated in the transcription. 3. **\[ \frac{\sum_{j=5}^{15} (
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning