Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
Related questions
Concept explainers
Equations and Inequations
Equations and inequalities describe the relationship between two mathematical expressions.
Linear Functions
A linear function can just be a constant, or it can be the constant multiplied with the variable like x or y. If the variables are of the form, x2, x1/2 or y2 it is not linear. The exponent over the variables should always be 1.
Question
solve following
![### Calculus Problem on Derivatives Using a Table
#### 3) Using the table below:
| x | f(x) | g(x) | f'(x) | g'(x) |
|-----|------|------|-------|-------|
| 0 | -1 | 3 | 0 | 2 |
| 1 | 3 | 2 | -1 | 1 |
---
**a) If \( h(x) = f(x) \cdot g(x) \), find \( h'(0) \).**
**b) If \( h(x) = \frac{f(x)}{g(x)} \), find \( h'(1) \).**
---
### Solution:
**a) Finding \( h'(0) \) when \( h(x) = f(x) \cdot g(x) \):**
To find \( h'(x) \) for the function \( h(x) = f(x) \cdot g(x) \), use the product rule for derivatives, which states:
\[ h'(x) = f'(x) \cdot g(x) + f(x) \cdot g'(x) \]
Substitute \( x = 0 \) and use the values from the table:
- \( f(0) = -1 \)
- \( g(0) = 3 \)
- \( f'(0) = 0 \)
- \( g'(0) = 2 \)
Now, calculate \( h'(0) \):
\[ h'(0) = f'(0) \cdot g(0) + f(0) \cdot g'(0) \]
\[ h'(0) = 0 \cdot 3 + (-1) \cdot 2 \]
\[ h'(0) = 0 - 2 \]
\[ h'(0) = -2 \]
**Answer:** \( h'(0) = -2 \)
---
**b) Finding \( h'(1) \) when \( h(x) = \frac{f(x)}{g(x)} \):**
To find \( h'(x) \) for the function \( h(x) = \frac{f(x)}{g(x)} \), use the quotient rule for derivatives, which states:
\[ h'(x) = \frac{f'(x)](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fa55013e1-91aa-48be-9c4b-bf8a0e47de22%2F7370ba32-9b89-4cda-8dfb-e33da876d1c3%2F2fhvb52_processed.png&w=3840&q=75)
Transcribed Image Text:### Calculus Problem on Derivatives Using a Table
#### 3) Using the table below:
| x | f(x) | g(x) | f'(x) | g'(x) |
|-----|------|------|-------|-------|
| 0 | -1 | 3 | 0 | 2 |
| 1 | 3 | 2 | -1 | 1 |
---
**a) If \( h(x) = f(x) \cdot g(x) \), find \( h'(0) \).**
**b) If \( h(x) = \frac{f(x)}{g(x)} \), find \( h'(1) \).**
---
### Solution:
**a) Finding \( h'(0) \) when \( h(x) = f(x) \cdot g(x) \):**
To find \( h'(x) \) for the function \( h(x) = f(x) \cdot g(x) \), use the product rule for derivatives, which states:
\[ h'(x) = f'(x) \cdot g(x) + f(x) \cdot g'(x) \]
Substitute \( x = 0 \) and use the values from the table:
- \( f(0) = -1 \)
- \( g(0) = 3 \)
- \( f'(0) = 0 \)
- \( g'(0) = 2 \)
Now, calculate \( h'(0) \):
\[ h'(0) = f'(0) \cdot g(0) + f(0) \cdot g'(0) \]
\[ h'(0) = 0 \cdot 3 + (-1) \cdot 2 \]
\[ h'(0) = 0 - 2 \]
\[ h'(0) = -2 \]
**Answer:** \( h'(0) = -2 \)
---
**b) Finding \( h'(1) \) when \( h(x) = \frac{f(x)}{g(x)} \):**
To find \( h'(x) \) for the function \( h(x) = \frac{f(x)}{g(x)} \), use the quotient rule for derivatives, which states:
\[ h'(x) = \frac{f'(x)
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.Recommended textbooks for you
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781285741550/9781285741550_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
![Thomas' Calculus (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780134438986/9780134438986_smallCoverImage.gif)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
![Calculus: Early Transcendentals (3rd Edition)](https://www.bartleby.com/isbn_cover_images/9780134763644/9780134763644_smallCoverImage.gif)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781285741550/9781285741550_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
![Thomas' Calculus (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780134438986/9780134438986_smallCoverImage.gif)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
![Calculus: Early Transcendentals (3rd Edition)](https://www.bartleby.com/isbn_cover_images/9780134763644/9780134763644_smallCoverImage.gif)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781319050740/9781319050740_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
![Precalculus](https://www.bartleby.com/isbn_cover_images/9780135189405/9780135189405_smallCoverImage.gif)
![Calculus: Early Transcendental Functions](https://www.bartleby.com/isbn_cover_images/9781337552516/9781337552516_smallCoverImage.gif)
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning