3) Repeat parts (b)-(d) of Problem 2 with y Number of veterans ("veterans") and x = population ("totpop”). How does the standard error using SRS compare with that using ratio estimation? Here is the Problem 2 2) The data file counties.csv contains information on land area, population, number of physicians, unemployment, and a number of other quantities for an SRS of 100 of the 3141 counties in the United States (U.S. Census Bureau, 1994). The total land area for the United States is 3,536,278 square miles; 1993 population was estimated to be 255,077,536. a) Draw a histogram of the farm populations (the variable “farmpop") for the 100 counties. Comment on the shape of the distribution. b) Estimate the total farm population in the United States, along with its standard error, using Nỹ. c) Plot the farm populations vs. land areas (variables “farmpop” and “landarea”) for each county, and find the sample correlation coefficient between them. Which method do you think is more appropriate for these data: ratio estimation or regression estimation or none of them? d) Using ratio estimation, use the auxiliary variable land area to estimate the total farm population in the United States, along with the standard error. e) The “true” value for total farm population is 3,871,583. Which method of estimation came closer: SRS or ratio estimation? Here is the baseball.csv data. A B C D E F G H M N ○ P Q R S 1 RN State 2 27 AL 3 48 AL County Escambia Marshall landarea totpop physician enroll percpub civlabor unemp farmpop numfarm farmacre fedgrant fedciv milit veterans percviet 948 36023 24 567 73524 44 6931 11928 95.4 15247 1339 531 414 90646 122.3 85 370 3723 27.1 98.6 38803 3189 1592 1582 136599 235.7 316 748 8510 29.1 4 85 AK Prince of 7325 6408 7 1317 98.6 2787 383 71 2 214 32.2 126 63 809 44.6 5 126 AR Cross 6 158 AR Newton 7 186 CA Butte 8 254 CO Custer 9 286 CO Ouray 10 305 CT Hartford 11 340 FL Hardee 616 19261 823 7649 1640 188377 739 2140 542 2497 736 847009 637 20084 11 4066 99.1 8336 704 762 492 339830 81.4 87 107 1505 23.9 3 1579 99.2 3280 270 600 562 98106 31.7 71 44 807 25.5 327 27899 94.5 77500 7303 2818 2030 494530 688 570 577 23958 27.6 1 364 97.5 789 42 145 130 150334 7 11 10 347 37.8 3 429 99.3 1919 109 112 88 -99 5.7 5 11 337 35.9 2851 128982 90 470164 32673 623 656 60277 4051.1 8504 2975 93683 24.9 12 350 FL Lake 13 371 FL St. Lucie 14 422 GA Crisp 573 274 953 161228 161106 20377 11 3802 167 19777 176 99.1 9368 987 1202 1130 303892 60.6 55 44 2071 21.4 91.5 58285 5182 1582 1285 232657 664.2 499 403 26923 21.6 22769 90.6 65078 8966 257 522 297433 543.7 536 348 23205 21.1 20 4112 95.1 8980 573 341 192 112431 67.3 64 170 1893 32.3 15 432 GA Echols 404 2291 0 483 100 875 39 162 80 13745 4.8 5 19 242 30.2 16 527 GA Walton 329 40750 29 7210 95.2 17404 955 756 469 65220 96.2 93 307 3551 28.4 17 559 ID Camas 1075 755 0 147 100 365 24 66 117 174842 5.9 21 0 82 32.9 18 586 ID 19 606 IL 20 617 IL Cook Ford 21 630 IL Jasper 22 639 IL Lake 23 698 IN Boone Shoshone 2634 13644 946 5139341 486 13914 494 10519 448 541047 423 38381 9 2683 97.8 5041 981 29 46 5148 59.5 203 75 2070 29.3 15153 853115 81.5 2715405 196796 196 389 46907 20151.2 61976 16480 457880 24.2 11 3 1093 24 702 IN Clark 375 89658 81 109 2555 1994 88975 7062 15779 97.6 91.7 7265 5828 481 434 1477 729 297013 54.4 69 40 1741 32.2 2795 88.9 319950 14863 586 95.1 21157 716 2258 894 262198 448 82349 822 227524 31.3 1641.8 83.6 52 31 1073 22.7 9399 21454 53060 32.7 111 213 4283 29.5 25 703 IN Clay 358 25078 11 4506 92.4 47787 95.9 10971 3025 1310 691 118810 314.6 2980 488 11222 31.8 748 1811 646 162594 82.9 80 137 2874 22.2 26 743 IN Martin 336 10510 4 1923 95.2 5353 374 695 361 67373 244.9 5240 109 1359 31.2 27 780 IN counties Washingt (+) 515 24398 9 4443 99.1 11411 882 2119 1034 195118 63.4 69 128 2745 29.7 4030 www ممم 102 20 ་

MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
icon
Related questions
Question
Hi, could you please solve Question 3 using R?
For the questions, use the data I provided in the screenshot.
(I would like to upload the data, but the program does not let me)
Please, write the codes with the explanations.
 
Thank you.
3) Repeat parts (b)-(d) of Problem 2 with y Number of veterans ("veterans") and x = population ("totpop”).
How does the standard error using SRS compare with that using ratio estimation?
Here is the Problem 2
2) The data file counties.csv contains information on land area, population, number of physicians,
unemployment, and a number of other quantities for an SRS of 100 of the 3141 counties in the United
States (U.S. Census Bureau, 1994). The total land area for the United States is 3,536,278 square
miles; 1993 population was estimated to be 255,077,536.
a) Draw a histogram of the farm populations (the variable “farmpop") for the 100 counties. Comment
on the shape of the distribution.
b) Estimate the total farm population in the United States, along with its standard error, using Nỹ.
c) Plot the farm populations vs. land areas (variables “farmpop” and “landarea”) for each county, and
find the sample correlation coefficient between them. Which method do you think is more
appropriate for these data: ratio estimation or regression estimation or none of them?
d) Using ratio estimation, use the auxiliary variable land area to estimate the total farm population in
the United States, along with the standard error.
e) The “true” value for total farm population is 3,871,583. Which method of estimation came closer:
SRS or ratio estimation?
Here is the baseball.csv data.
A
B
C
D
E
F
G
H
M
N
○
P
Q
R
S
1
RN
State
2
27 AL
3
48 AL
County
Escambia
Marshall
landarea totpop physician enroll
percpub civlabor unemp farmpop numfarm farmacre fedgrant fedciv milit
veterans percviet
948
36023
24
567 73524
44
6931
11928
95.4 15247
1339
531
414 90646 122.3
85
370
3723
27.1
98.6 38803
3189
1592
1582
136599
235.7
316
748
8510
29.1
4
85 AK
Prince of
7325
6408
7
1317
98.6
2787
383
71
2
214
32.2
126
63
809
44.6
5
126 AR
Cross
6
158 AR
Newton
7
186 CA
Butte
8
254 CO
Custer
9
286 CO
Ouray
10
305 CT
Hartford
11
340 FL
Hardee
616 19261
823 7649
1640 188377
739 2140
542 2497
736 847009
637 20084
11
4066
99.1
8336
704
762
492
339830
81.4
87
107
1505
23.9
3
1579
99.2
3280
270
600
562
98106
31.7
71
44
807
25.5
327
27899
94.5
77500
7303
2818
2030 494530
688
570
577
23958
27.6
1
364
97.5
789
42
145
130 150334
7
11
10
347
37.8
3
429
99.3
1919
109
112
88
-99
5.7
5
11
337
35.9
2851 128982
90 470164
32673
623
656
60277
4051.1
8504
2975
93683
24.9
12
350 FL
Lake
13
371 FL
St. Lucie
14
422 GA
Crisp
573
274
953 161228
161106
20377
11 3802
167 19777
176
99.1
9368
987
1202
1130
303892
60.6
55
44
2071
21.4
91.5
58285
5182
1582
1285 232657 664.2
499
403 26923
21.6
22769
90.6
65078
8966
257
522 297433 543.7
536
348
23205
21.1
20
4112
95.1
8980
573
341
192 112431
67.3
64
170
1893
32.3
15
432 GA
Echols
404
2291
0
483
100
875
39
162
80 13745
4.8
5
19
242
30.2
16
527 GA
Walton
329
40750
29
7210
95.2
17404
955
756
469 65220
96.2
93
307
3551
28.4
17
559 ID
Camas
1075
755
0
147
100
365
24
66
117
174842
5.9
21
0
82
32.9
18
586 ID
19
606 IL
20
617 IL
Cook
Ford
21
630 IL
Jasper
22
639 IL
Lake
23
698 IN
Boone
Shoshone 2634 13644
946 5139341
486 13914
494 10519
448 541047
423 38381
9
2683
97.8
5041
981
29
46
5148
59.5
203
75
2070
29.3
15153
853115
81.5 2715405
196796
196
389
46907 20151.2
61976
16480 457880
24.2
11
3
1093
24
702 IN
Clark
375 89658
81
109
2555
1994
88975
7062
15779
97.6
91.7
7265
5828
481
434
1477
729 297013
54.4
69
40
1741
32.2
2795
88.9 319950 14863
586
95.1 21157
716
2258
894 262198
448 82349
822 227524
31.3
1641.8
83.6
52
31
1073
22.7
9399
21454 53060
32.7
111
213
4283
29.5
25
703 IN
Clay
358 25078
11
4506
92.4 47787
95.9 10971
3025
1310
691 118810
314.6
2980
488
11222
31.8
748
1811
646 162594
82.9
80
137
2874
22.2
26
743 IN
Martin
336 10510
4
1923
95.2
5353
374
695
361 67373
244.9
5240
109
1359
31.2
27
780 IN
counties
Washingt
(+)
515 24398
9
4443
99.1
11411
882
2119
1034 195118
63.4
69
128
2745
29.7
4030
www
ممم
102
20
་
Transcribed Image Text:3) Repeat parts (b)-(d) of Problem 2 with y Number of veterans ("veterans") and x = population ("totpop”). How does the standard error using SRS compare with that using ratio estimation? Here is the Problem 2 2) The data file counties.csv contains information on land area, population, number of physicians, unemployment, and a number of other quantities for an SRS of 100 of the 3141 counties in the United States (U.S. Census Bureau, 1994). The total land area for the United States is 3,536,278 square miles; 1993 population was estimated to be 255,077,536. a) Draw a histogram of the farm populations (the variable “farmpop") for the 100 counties. Comment on the shape of the distribution. b) Estimate the total farm population in the United States, along with its standard error, using Nỹ. c) Plot the farm populations vs. land areas (variables “farmpop” and “landarea”) for each county, and find the sample correlation coefficient between them. Which method do you think is more appropriate for these data: ratio estimation or regression estimation or none of them? d) Using ratio estimation, use the auxiliary variable land area to estimate the total farm population in the United States, along with the standard error. e) The “true” value for total farm population is 3,871,583. Which method of estimation came closer: SRS or ratio estimation? Here is the baseball.csv data. A B C D E F G H M N ○ P Q R S 1 RN State 2 27 AL 3 48 AL County Escambia Marshall landarea totpop physician enroll percpub civlabor unemp farmpop numfarm farmacre fedgrant fedciv milit veterans percviet 948 36023 24 567 73524 44 6931 11928 95.4 15247 1339 531 414 90646 122.3 85 370 3723 27.1 98.6 38803 3189 1592 1582 136599 235.7 316 748 8510 29.1 4 85 AK Prince of 7325 6408 7 1317 98.6 2787 383 71 2 214 32.2 126 63 809 44.6 5 126 AR Cross 6 158 AR Newton 7 186 CA Butte 8 254 CO Custer 9 286 CO Ouray 10 305 CT Hartford 11 340 FL Hardee 616 19261 823 7649 1640 188377 739 2140 542 2497 736 847009 637 20084 11 4066 99.1 8336 704 762 492 339830 81.4 87 107 1505 23.9 3 1579 99.2 3280 270 600 562 98106 31.7 71 44 807 25.5 327 27899 94.5 77500 7303 2818 2030 494530 688 570 577 23958 27.6 1 364 97.5 789 42 145 130 150334 7 11 10 347 37.8 3 429 99.3 1919 109 112 88 -99 5.7 5 11 337 35.9 2851 128982 90 470164 32673 623 656 60277 4051.1 8504 2975 93683 24.9 12 350 FL Lake 13 371 FL St. Lucie 14 422 GA Crisp 573 274 953 161228 161106 20377 11 3802 167 19777 176 99.1 9368 987 1202 1130 303892 60.6 55 44 2071 21.4 91.5 58285 5182 1582 1285 232657 664.2 499 403 26923 21.6 22769 90.6 65078 8966 257 522 297433 543.7 536 348 23205 21.1 20 4112 95.1 8980 573 341 192 112431 67.3 64 170 1893 32.3 15 432 GA Echols 404 2291 0 483 100 875 39 162 80 13745 4.8 5 19 242 30.2 16 527 GA Walton 329 40750 29 7210 95.2 17404 955 756 469 65220 96.2 93 307 3551 28.4 17 559 ID Camas 1075 755 0 147 100 365 24 66 117 174842 5.9 21 0 82 32.9 18 586 ID 19 606 IL 20 617 IL Cook Ford 21 630 IL Jasper 22 639 IL Lake 23 698 IN Boone Shoshone 2634 13644 946 5139341 486 13914 494 10519 448 541047 423 38381 9 2683 97.8 5041 981 29 46 5148 59.5 203 75 2070 29.3 15153 853115 81.5 2715405 196796 196 389 46907 20151.2 61976 16480 457880 24.2 11 3 1093 24 702 IN Clark 375 89658 81 109 2555 1994 88975 7062 15779 97.6 91.7 7265 5828 481 434 1477 729 297013 54.4 69 40 1741 32.2 2795 88.9 319950 14863 586 95.1 21157 716 2258 894 262198 448 82349 822 227524 31.3 1641.8 83.6 52 31 1073 22.7 9399 21454 53060 32.7 111 213 4283 29.5 25 703 IN Clay 358 25078 11 4506 92.4 47787 95.9 10971 3025 1310 691 118810 314.6 2980 488 11222 31.8 748 1811 646 162594 82.9 80 137 2874 22.2 26 743 IN Martin 336 10510 4 1923 95.2 5353 374 695 361 67373 244.9 5240 109 1359 31.2 27 780 IN counties Washingt (+) 515 24398 9 4443 99.1 11411 882 2119 1034 195118 63.4 69 128 2745 29.7 4030 www ممم 102 20 ་
Expert Solution
steps

Step by step

Solved in 1 steps

Blurred answer
Recommended textbooks for you
MATLAB: An Introduction with Applications
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman