Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
Related questions
Question
![### Topic: Ratio Test for Series Convergence
#### Consider the Series
\[ \sum_{n=1}^{\infty} \frac{3^n n!}{5^n n^2 (n+1)!} \]
#### Instructions
In your written work:
1. **Perform the ratio test.**
2. **Show all work.**
#### Goal
Determine if the ratio test is:
- Inconclusive
- Shows that the series is convergent
- Shows that the series is divergent
#### Options
- ⬜ Convergent
- ⬜ Divergent
- ⬜ Inconclusive
---
### Explanation
The Ratio Test for the convergence of a series \(\sum a_n\) is defined as follows:
1. Calculate the limit:
\[ L = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| \]
2. Interpret the result with the following criteria:
- If \( L < 1 \), the series is **absolutely convergent**.
- If \( L > 1 \) or \( L = \infty \), the series is **divergent**.
- If \( L = 1 \), the test is **inconclusive**.
Apply the Ratio Test to the given series \(\sum_{n=1}^{\infty} \frac{3^n n!}{5^n n^2 (n+1)!}\) to determine its convergence properties.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fd7b1f94a-aeb1-4e21-a353-b14674dcbf02%2F95f1de87-b8d0-49a2-9f79-79e57125db5e%2F4hczp7_processed.jpeg&w=3840&q=75)
Transcribed Image Text:### Topic: Ratio Test for Series Convergence
#### Consider the Series
\[ \sum_{n=1}^{\infty} \frac{3^n n!}{5^n n^2 (n+1)!} \]
#### Instructions
In your written work:
1. **Perform the ratio test.**
2. **Show all work.**
#### Goal
Determine if the ratio test is:
- Inconclusive
- Shows that the series is convergent
- Shows that the series is divergent
#### Options
- ⬜ Convergent
- ⬜ Divergent
- ⬜ Inconclusive
---
### Explanation
The Ratio Test for the convergence of a series \(\sum a_n\) is defined as follows:
1. Calculate the limit:
\[ L = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| \]
2. Interpret the result with the following criteria:
- If \( L < 1 \), the series is **absolutely convergent**.
- If \( L > 1 \) or \( L = \infty \), the series is **divergent**.
- If \( L = 1 \), the test is **inconclusive**.
Apply the Ratio Test to the given series \(\sum_{n=1}^{\infty} \frac{3^n n!}{5^n n^2 (n+1)!}\) to determine its convergence properties.
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 1 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.Recommended textbooks for you
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781285741550/9781285741550_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
![Thomas' Calculus (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780134438986/9780134438986_smallCoverImage.gif)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
![Calculus: Early Transcendentals (3rd Edition)](https://www.bartleby.com/isbn_cover_images/9780134763644/9780134763644_smallCoverImage.gif)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781285741550/9781285741550_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
![Thomas' Calculus (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780134438986/9780134438986_smallCoverImage.gif)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
![Calculus: Early Transcendentals (3rd Edition)](https://www.bartleby.com/isbn_cover_images/9780134763644/9780134763644_smallCoverImage.gif)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781319050740/9781319050740_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
![Precalculus](https://www.bartleby.com/isbn_cover_images/9780135189405/9780135189405_smallCoverImage.gif)
![Calculus: Early Transcendental Functions](https://www.bartleby.com/isbn_cover_images/9781337552516/9781337552516_smallCoverImage.gif)
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning