3 Let f(x) = 2 + In(bx), where b is a positive constant. Find f'(x).

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
100%
**Problem Statement:**

Let \( f(x) = \frac{3}{x} + \ln(bx) \), where \( b \) is a positive constant. Find \( f'(x) \).

**Options:**

A) \( f'(x) = -\frac{3}{x^2} + \frac{b}{x} \)

B) \( f'(x) = \frac{3}{x^2} - \frac{b}{x} \)

C) \( f'(x) = -\frac{3}{x^2} + \frac{1}{x} \)

D) \( f'(x) = -\frac{3}{x^2} - \frac{1}{x} \)

E) \( f'(x) = \frac{3}{x^2} - \frac{b}{x} \)

F) Answer not listed

**Solution:**

The correct answer is option:

C) \( f'(x) = -\frac{3}{x^2} + \frac{1}{x} \)

**Explanation:**

To find the derivative \( f'(x) \), apply the derivatives of \( \frac{3}{x} \) and \( \ln(bx) \):

- The derivative of \( \frac{3}{x} \) is \( -\frac{3}{x^2} \).
- The derivative of \( \ln(bx) \) is \( \frac{b}{bx} = \frac{1}{x} \).

So, \( f'(x) = -\frac{3}{x^2} + \frac{1}{x} \).
Transcribed Image Text:**Problem Statement:** Let \( f(x) = \frac{3}{x} + \ln(bx) \), where \( b \) is a positive constant. Find \( f'(x) \). **Options:** A) \( f'(x) = -\frac{3}{x^2} + \frac{b}{x} \) B) \( f'(x) = \frac{3}{x^2} - \frac{b}{x} \) C) \( f'(x) = -\frac{3}{x^2} + \frac{1}{x} \) D) \( f'(x) = -\frac{3}{x^2} - \frac{1}{x} \) E) \( f'(x) = \frac{3}{x^2} - \frac{b}{x} \) F) Answer not listed **Solution:** The correct answer is option: C) \( f'(x) = -\frac{3}{x^2} + \frac{1}{x} \) **Explanation:** To find the derivative \( f'(x) \), apply the derivatives of \( \frac{3}{x} \) and \( \ln(bx) \): - The derivative of \( \frac{3}{x} \) is \( -\frac{3}{x^2} \). - The derivative of \( \ln(bx) \) is \( \frac{b}{bx} = \frac{1}{x} \). So, \( f'(x) = -\frac{3}{x^2} + \frac{1}{x} \).
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning