3 Compute x using the vectors w = -4 and x = 2 - 5 2 x = (Simplify your answer. Type an integer or simplified fraction for each matrix element.)

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
**Vectors and Matrix Operations**

To compute the vector projection of vector **x** onto vector **w**, we utilize the formula:

\[ \frac{\mathbf{x} \cdot \mathbf{w}}{\mathbf{w} \cdot \mathbf{w}} \mathbf{w} \]

Given the vectors:
\[ \mathbf{w} = \begin{bmatrix} 3 \\ -4 \\ -5 \end{bmatrix} \]
\[ \mathbf{x} = \begin{bmatrix} 6 \\ -2 \\ 2 \end{bmatrix} \]

The form of the computation we will use is:
\[ \frac{\mathbf{x} \cdot \mathbf{w}}{\mathbf{x} \cdot \mathbf{x}} \mathbf{x} \]

We start by computing the dot products:

1. **Calculate \( \mathbf{x} \cdot \mathbf{w} \):**

   \[
   (6)(3) + (-2)(-4) + (2)(-5) = 18 + 8 - 10 = 16
   \]

2. **Calculate \( \mathbf{x} \cdot \mathbf{x} \):**

   \[
   (6)(6) + (-2)(-2) + (2)(2) = 36 + 4 + 4 = 44
   \]

Now, substituting back into the equation:

\[
\frac{16}{44} \mathbf{x}
\]

Simplify the fraction \( \frac{16}{44} \):

\[
\frac{4}{11} \mathbf{x}
\]

Thus calculating the components:

\[
\frac{4}{11} \begin{bmatrix} 6 \\ -2 \\ 2 \end{bmatrix} = \begin{bmatrix} \frac{24}{11} \\ -\frac{8}{11} \\ \frac{8}{11} \end{bmatrix}
\]

The result of the operation is:

\[
\begin{pmatrix} \frac{24}{11} \\ -\frac{8}{11} \\ \frac{8}{11} \end{pmatrix}
\]

**(Simplify your answer. Type an integer or simplified fraction for each matrix element.)**
Transcribed Image Text:**Vectors and Matrix Operations** To compute the vector projection of vector **x** onto vector **w**, we utilize the formula: \[ \frac{\mathbf{x} \cdot \mathbf{w}}{\mathbf{w} \cdot \mathbf{w}} \mathbf{w} \] Given the vectors: \[ \mathbf{w} = \begin{bmatrix} 3 \\ -4 \\ -5 \end{bmatrix} \] \[ \mathbf{x} = \begin{bmatrix} 6 \\ -2 \\ 2 \end{bmatrix} \] The form of the computation we will use is: \[ \frac{\mathbf{x} \cdot \mathbf{w}}{\mathbf{x} \cdot \mathbf{x}} \mathbf{x} \] We start by computing the dot products: 1. **Calculate \( \mathbf{x} \cdot \mathbf{w} \):** \[ (6)(3) + (-2)(-4) + (2)(-5) = 18 + 8 - 10 = 16 \] 2. **Calculate \( \mathbf{x} \cdot \mathbf{x} \):** \[ (6)(6) + (-2)(-2) + (2)(2) = 36 + 4 + 4 = 44 \] Now, substituting back into the equation: \[ \frac{16}{44} \mathbf{x} \] Simplify the fraction \( \frac{16}{44} \): \[ \frac{4}{11} \mathbf{x} \] Thus calculating the components: \[ \frac{4}{11} \begin{bmatrix} 6 \\ -2 \\ 2 \end{bmatrix} = \begin{bmatrix} \frac{24}{11} \\ -\frac{8}{11} \\ \frac{8}{11} \end{bmatrix} \] The result of the operation is: \[ \begin{pmatrix} \frac{24}{11} \\ -\frac{8}{11} \\ \frac{8}{11} \end{pmatrix} \] **(Simplify your answer. Type an integer or simplified fraction for each matrix element.)**
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Knowledge Booster
Determinant
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,