3) A)-V2-a-2 3a.) (r)D 3b.) N(-2)-2 3c.) fxth)-f(x) 12-x+h) =D72-(x) (Jz-Cth)+

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
How do I work with the radicals?
### Transcription of Math Problem Solving

1. **Expression for \( h(x) \):**
   \[
   h(x) = \sqrt{2 - x} - 2
   \]

2. **Simplification Steps:**
   \[
   2 \cdot \frac{1}{2} - \frac{x}{2}
   \]

3. **Derivative Approximation:**
   \[
   \frac{f(x+h) - f(x)}{h}
   \]

4. **Simplifying the Expression:**
   \[
   \frac{\sqrt{2-(x+h)} - \sqrt{2-x}}{h}
   \]

5. **Rewriting the Expression:**
   \[
   \frac{\sqrt{2-(x+h)} - \sqrt{2-x}}{h} = \frac{\left( \sqrt{2-(x+h)} - \sqrt{2-x} \right) \left( \sqrt{2-(x+h)} + \sqrt{2-x} \right)}{\sqrt{2-(x+h)} + \sqrt{2-x}}
   \]

6. **Solving the Difference of Squares:**
   \[
   2 - (x+h) - 2 + x
   \]
   \[
   2 \cdot (-x - h)
   \]
   \[
   -2x - 2h - 2x
   \]

7. **Further Simplification:**
   \[
   \frac{-4 - 2h}{h}
   \]
   \[
   \frac{-x - 2h - 2}{h}
   \]

### Explanation

The work involves simplifying a mathematical expression involving radicals and using the concept of difference quotients for derivatives. The student approaches the problem by manipulating the expression to remove radicals through rationalization. This common algebraic technique is used to facilitate the computation of limits, as is typical in calculus when determining derivatives.
Transcribed Image Text:### Transcription of Math Problem Solving 1. **Expression for \( h(x) \):** \[ h(x) = \sqrt{2 - x} - 2 \] 2. **Simplification Steps:** \[ 2 \cdot \frac{1}{2} - \frac{x}{2} \] 3. **Derivative Approximation:** \[ \frac{f(x+h) - f(x)}{h} \] 4. **Simplifying the Expression:** \[ \frac{\sqrt{2-(x+h)} - \sqrt{2-x}}{h} \] 5. **Rewriting the Expression:** \[ \frac{\sqrt{2-(x+h)} - \sqrt{2-x}}{h} = \frac{\left( \sqrt{2-(x+h)} - \sqrt{2-x} \right) \left( \sqrt{2-(x+h)} + \sqrt{2-x} \right)}{\sqrt{2-(x+h)} + \sqrt{2-x}} \] 6. **Solving the Difference of Squares:** \[ 2 - (x+h) - 2 + x \] \[ 2 \cdot (-x - h) \] \[ -2x - 2h - 2x \] 7. **Further Simplification:** \[ \frac{-4 - 2h}{h} \] \[ \frac{-x - 2h - 2}{h} \] ### Explanation The work involves simplifying a mathematical expression involving radicals and using the concept of difference quotients for derivatives. The student approaches the problem by manipulating the expression to remove radicals through rationalization. This common algebraic technique is used to facilitate the computation of limits, as is typical in calculus when determining derivatives.
The image contains a mathematical problem involving the function \( h(x) = \sqrt{2-x} \), with \( a = -2 \).

### Problem Setup:
1. **Function**: \( h(x) = \sqrt{2-x} \)
2. **Point**: \( a = -2 \)

### Derivation Process:
- **Objective**: Determine the derivative \( h'(x) \) and evaluate at specific points.

### Steps:

1. **Expression for limit definition of a derivative**:
   \[
   \frac{f(x+h) - f(x)}{h}
   \]
   Specifically applied to:
   \[
   \frac{\sqrt{2-(x+h)} - \sqrt{2-x}}{h}
   \]

2. **Simplification using conjugates**:
   Multiply the numerator and the denominator by the conjugate:
   \[
   \frac{(\sqrt{2-(x+h)} - \sqrt{2-x})(\sqrt{2-(x+h)} + \sqrt{2-x})}{h(\sqrt{2-(x+h)} + \sqrt{2-x})}
   \]

3. **Resulting expression**:
   - The numerator simplifies to: \(-x-h\)
   - The full expression simplifies:
     \[
     \frac{-x-h}{h(\sqrt{2-(x+h)} + \sqrt{2-x})}
     \]

4. **Derivative \( h'(x) \)**:
   Evaluating the derivative:
   \[
   h'(x) = -\frac{1}{2\sqrt{2-x}}
   \]
   (Based on substitution and simplification.)

5. **Specific evaluations**:
   - \( h'(-2) = -\frac{1}{2} \)
   - Further evaluations are suggested, but the steps aren’t filled in.

### Additional Notes:
- This exercise involves both algebraic manipulation and understanding of the derivative concept using limits.
- The steps may include checking the rationalization of expressions using conjugates to achieve the simplified form.

This solution provides a comprehensive example of applying the derivative concept to square root functions and verifying points as part of derivative evaluation.
Transcribed Image Text:The image contains a mathematical problem involving the function \( h(x) = \sqrt{2-x} \), with \( a = -2 \). ### Problem Setup: 1. **Function**: \( h(x) = \sqrt{2-x} \) 2. **Point**: \( a = -2 \) ### Derivation Process: - **Objective**: Determine the derivative \( h'(x) \) and evaluate at specific points. ### Steps: 1. **Expression for limit definition of a derivative**: \[ \frac{f(x+h) - f(x)}{h} \] Specifically applied to: \[ \frac{\sqrt{2-(x+h)} - \sqrt{2-x}}{h} \] 2. **Simplification using conjugates**: Multiply the numerator and the denominator by the conjugate: \[ \frac{(\sqrt{2-(x+h)} - \sqrt{2-x})(\sqrt{2-(x+h)} + \sqrt{2-x})}{h(\sqrt{2-(x+h)} + \sqrt{2-x})} \] 3. **Resulting expression**: - The numerator simplifies to: \(-x-h\) - The full expression simplifies: \[ \frac{-x-h}{h(\sqrt{2-(x+h)} + \sqrt{2-x})} \] 4. **Derivative \( h'(x) \)**: Evaluating the derivative: \[ h'(x) = -\frac{1}{2\sqrt{2-x}} \] (Based on substitution and simplification.) 5. **Specific evaluations**: - \( h'(-2) = -\frac{1}{2} \) - Further evaluations are suggested, but the steps aren’t filled in. ### Additional Notes: - This exercise involves both algebraic manipulation and understanding of the derivative concept using limits. - The steps may include checking the rationalization of expressions using conjugates to achieve the simplified form. This solution provides a comprehensive example of applying the derivative concept to square root functions and verifying points as part of derivative evaluation.
Expert Solution
Step 1

Calculus homework question answer, step 1, image 1

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Exponents
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning