3 4) f(2)=2²³ +2² (xtiy)² + 2i 3 x²y³²x³²+(y) ³+ 3x² (13) +3[iy)² x + 2i (x² iy²³ + 3x²iy (3y²x + Zi X3x = x³-3y²x +i Ux = 3x²-3y² w ally = -6yx ила и Vx= 6xy mon Vy = 3x²-3y² u(x,y)=x²-3y²x V(x, y) = 3x²y-y²³ +2 (3x²y-y³+2), V Ux= Vy (✓) Uly = -√x (✓)

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Is this correct. I had to find the real and imaginary parts of f(z) and write is as u(x,y) and v(x,y). I also had to show this using Cauchy Reimann equations. 

3
4) f(2)=2³+2i (xtiy) ³ +21
X² 24² x ²³² + (1y) ³ + 3 x ² (ig) + 3 [ig) ² x + 2i
х
(2² iy²³ + 3x²³ iy (3y² 2 + zi
3
x
²539=25-3y²x+i (3x²y-y²³+2),
Ux= 3x²-3y² μ| Vx= 6xy or
и
Billy = -6yx
или
2
|
Vy = 3x²-3y²
3
u (x,y) = x²³ - 3y²x
X
V(x, y) = 3x²y-y²³ +2
Uz - Vy (✓)
Uy Velos
(✓)
Transcribed Image Text:3 4) f(2)=2³+2i (xtiy) ³ +21 X² 24² x ²³² + (1y) ³ + 3 x ² (ig) + 3 [ig) ² x + 2i х (2² iy²³ + 3x²³ iy (3y² 2 + zi 3 x ²539=25-3y²x+i (3x²y-y²³+2), Ux= 3x²-3y² μ| Vx= 6xy or и Billy = -6yx или 2 | Vy = 3x²-3y² 3 u (x,y) = x²³ - 3y²x X V(x, y) = 3x²y-y²³ +2 Uz - Vy (✓) Uy Velos (✓)
Expert Solution
steps

Step by step

Solved in 3 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,