3-4 Asymptotic notation properties Let f(n) and g(n) be asymptotically positive functions. Prove or disprove each of the following conjectures. a. f(n) = O(g(n)) implies g(n) = 0(f(n)). b. f(n) + g(n) = Ⓒ(min(f(n), g(n))). c. f(n) = O(g(n)) implies lg(f(n)) = O(lg(g(n))), where lg(g(n)) ≥ 1 and f(n) ≥ 1 for all sufficiently large n. d. f(n) = O(g(n)) implies 2ƒ(n) = O (28 (n)). e. f(n) = 0 ((ƒ(n))²). f. f(n) = O(g(n)) implies g(n) = N(f(n)). g. f(n) = (f(n/2)). h. f(n) +o(f(n)) = ®(f(n)).

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
**3-4 Asymptotic Notation Properties**

Let \( f(n) \) and \( g(n) \) be asymptotically positive functions. Prove or disprove each of the following conjectures.

a. \( f(n) = O(g(n)) \) implies \( g(n) = O(f(n)) \).

b. \( f(n) + g(n) = \Theta(\min(f(n), g(n))) \).

c. \( f(n) = O(g(n)) \) implies \( \lg(f(n)) = O(\lg(g(n))) \), where \( \lg(g(n)) \geq 1 \) and \( f(n) \geq 1 \) for all sufficiently large \( n \).

d. \( f(n) = O(g(n)) \) implies \( 2^{f(n)} = O(2^{g(n)}) \).

e. \( f(n) = O((f(n))^2) \).

f. \( f(n) = O(g(n)) \) implies \( g(n) = \Omega(f(n)) \).

g. \( f(n) = \Theta(f(n/2)) \).

h. \( f(n) + o(f(n)) = \Theta(f(n)) \).
Transcribed Image Text:**3-4 Asymptotic Notation Properties** Let \( f(n) \) and \( g(n) \) be asymptotically positive functions. Prove or disprove each of the following conjectures. a. \( f(n) = O(g(n)) \) implies \( g(n) = O(f(n)) \). b. \( f(n) + g(n) = \Theta(\min(f(n), g(n))) \). c. \( f(n) = O(g(n)) \) implies \( \lg(f(n)) = O(\lg(g(n))) \), where \( \lg(g(n)) \geq 1 \) and \( f(n) \geq 1 \) for all sufficiently large \( n \). d. \( f(n) = O(g(n)) \) implies \( 2^{f(n)} = O(2^{g(n)}) \). e. \( f(n) = O((f(n))^2) \). f. \( f(n) = O(g(n)) \) implies \( g(n) = \Omega(f(n)) \). g. \( f(n) = \Theta(f(n/2)) \). h. \( f(n) + o(f(n)) = \Theta(f(n)) \).
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 5 steps with 5 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,