3 2 Suppose the matrix, A, has eigenvectors and whose eigenvalues are 8, – 2 and 4 respectively. Then, using the same order, A can be written in the form A = PAP-1 where P = and A =

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
100%
Suppose the matrix, \( A \), has eigenvectors 

\[
\begin{bmatrix} 
3 \\ 
0 \\ 
-2 
\end{bmatrix},
\begin{bmatrix} 
2 \\ 
1 \\ 
-2 
\end{bmatrix},
\begin{bmatrix} 
5 \\ 
0 \\ 
-3 
\end{bmatrix}
\]

whose eigenvalues are 8, \(-2\) and 4 respectively. Then, using the same order, \( A \) can be written in the form 

\[
A = P \Lambda P^{-1}
\]

where

\[
P = 
\begin{bmatrix} 
\boxed{} & \boxed{} & \boxed{} \\ 
\boxed{} & \boxed{} & \boxed{} \\ 
\boxed{} & \boxed{} & \boxed{} 
\end{bmatrix}
\]

and

\[
\Lambda = 
\begin{bmatrix} 
\boxed{} & \boxed{} & \boxed{} \\ 
\boxed{} & \boxed{} & \boxed{} \\ 
\boxed{} & \boxed{} & \boxed{} 
\end{bmatrix}
\]
Transcribed Image Text:Suppose the matrix, \( A \), has eigenvectors \[ \begin{bmatrix} 3 \\ 0 \\ -2 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \\ -2 \end{bmatrix}, \begin{bmatrix} 5 \\ 0 \\ -3 \end{bmatrix} \] whose eigenvalues are 8, \(-2\) and 4 respectively. Then, using the same order, \( A \) can be written in the form \[ A = P \Lambda P^{-1} \] where \[ P = \begin{bmatrix} \boxed{} & \boxed{} & \boxed{} \\ \boxed{} & \boxed{} & \boxed{} \\ \boxed{} & \boxed{} & \boxed{} \end{bmatrix} \] and \[ \Lambda = \begin{bmatrix} \boxed{} & \boxed{} & \boxed{} \\ \boxed{} & \boxed{} & \boxed{} \\ \boxed{} & \boxed{} & \boxed{} \end{bmatrix} \]
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps

Blurred answer
Knowledge Booster
Matrix Eigenvalues and Eigenvectors
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,