3 -2 4 that AB is the zero matrix. -6] 3. Let A = Find a 2 x 2 matrix B with two different nonzero columns such

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Need help with number 3
3. Let \( A = \begin{bmatrix} 3 & -6 \\ -2 & 4 \end{bmatrix} \). Find a \( 2 \times 2 \) matrix \( B \) with two different nonzero columns such that \( AB \) is the zero matrix.

4. If \( A = \begin{bmatrix} 1 & -3 \\ -3 & 5 \end{bmatrix} \) and \( AB = \begin{bmatrix} -3 & -11 \\ 1 & 17 \end{bmatrix} \), determine the first and second columns of \( B \).

5. Show that if the columns of \( B \) are linearly dependent, then so are the columns of \( AB \).
Transcribed Image Text:3. Let \( A = \begin{bmatrix} 3 & -6 \\ -2 & 4 \end{bmatrix} \). Find a \( 2 \times 2 \) matrix \( B \) with two different nonzero columns such that \( AB \) is the zero matrix. 4. If \( A = \begin{bmatrix} 1 & -3 \\ -3 & 5 \end{bmatrix} \) and \( AB = \begin{bmatrix} -3 & -11 \\ 1 & 17 \end{bmatrix} \), determine the first and second columns of \( B \). 5. Show that if the columns of \( B \) are linearly dependent, then so are the columns of \( AB \).
Expert Solution
Step 1

Advanced Math homework question answer, step 1, image 1

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,