3 0 0, subject to the following boundary and initial conditions t > 0, t> 0, v(0, t) = 0, %3D v(3, t) = 0, %3D v(z,0) 7 sin() - 12 sin(r2), 0
3 0 0, subject to the following boundary and initial conditions t > 0, t> 0, v(0, t) = 0, %3D v(3, t) = 0, %3D v(z,0) 7 sin() - 12 sin(r2), 0
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
partC D
![7. Consider the partial differential equation
du
0,
0 <z < 3, t> 0,
subject to the following boundary and initial conditions
u(0, t)
2,
t> 0,
%3!
u(3, t)
5,
t>0,
u(r, 0)
= r+2+7sin() - 12 sin(rr),
0<rく3.
The solution has the form u(r, t) = v(x,t) + ü(x).
(a) Find the steady state solution ü(x).
(b) Show that v(x,t) satisfies the PDE
= 3-
0 <r< 3, t > 0,
subject to the following boundary and initial conditions
v(0, t)
= 0,
t>0,
v(3, t)
= 0.
t> 0,
v(x,0) = 7 sin()-
12 sin(r2),
0<I< 3.
3
(c) Solve the system in (b) for v(x, t) using separation of variables.
(d) Find u(r, t).](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fb9e36d11-12c6-459e-90bd-43ad465aedd9%2Fe7115520-12d3-4078-88b7-e6d4e9aedaf8%2Fqy2xevv_processed.jpeg&w=3840&q=75)
Transcribed Image Text:7. Consider the partial differential equation
du
0,
0 <z < 3, t> 0,
subject to the following boundary and initial conditions
u(0, t)
2,
t> 0,
%3!
u(3, t)
5,
t>0,
u(r, 0)
= r+2+7sin() - 12 sin(rr),
0<rく3.
The solution has the form u(r, t) = v(x,t) + ü(x).
(a) Find the steady state solution ü(x).
(b) Show that v(x,t) satisfies the PDE
= 3-
0 <r< 3, t > 0,
subject to the following boundary and initial conditions
v(0, t)
= 0,
t>0,
v(3, t)
= 0.
t> 0,
v(x,0) = 7 sin()-
12 sin(r2),
0<I< 3.
3
(c) Solve the system in (b) for v(x, t) using separation of variables.
(d) Find u(r, t).
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)