2xy dx + (x2 + 1) dy = 0 U (2xy? + 2xy e2x + e2x y) dx + (2x²y + x e2x) dy= 0 2xy dy + (3x + 2y²) dx = 0 (x2 + xy) dx + (y? + ½ x²) dy = 0 x³y³ dx + x(1 + y²) dy = 0 O (6xy – y) dx + (4y + 3x2 - 3xy²) dy=0 O (y/x + 6x) dx + (In x- 2) dy = 0
2xy dx + (x2 + 1) dy = 0 U (2xy? + 2xy e2x + e2x y) dx + (2x²y + x e2x) dy= 0 2xy dy + (3x + 2y²) dx = 0 (x2 + xy) dx + (y? + ½ x²) dy = 0 x³y³ dx + x(1 + y²) dy = 0 O (6xy – y) dx + (4y + 3x2 - 3xy²) dy=0 O (y/x + 6x) dx + (In x- 2) dy = 0
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
*this is multiple choice question* Determine which is a non-exact differential equation! (the answer can be more than one)
![### Differential Equations
Below are several differential equations. These can be used as practice problems or examples for studying how to solve different forms of differential equations. Review each equation and analyze the structure to determine the appropriate method for solution.
1. **Equation 1:**
\[
2xy \, dx + (x^2 + 1) \, dy = 0
\]
2. **Equation 2:**
\[
(2xy^2 + 2xy \, e^{2x} + e^{2x} y) \, dx + (2x^2 y + x \, e^{2x}) \, dy = 0
\]
3. **Equation 3:**
\[
2xy \, dy + (3x + 2y^2) \, dx = 0
\]
4. **Equation 4:**
\[
(x^2 + xy) \, dx + (y^2 + \frac{1}{2} x^2) \, dy = 0
\]
5. **Equation 5:**
\[
x^3 y^3 \, dx + x(1 + y^2) \, dy = 0
\]
6. **Equation 6:**
\[
(6xy - y^3) \, dx + (4y + 3x^2 - 3xy^2) \, dy = 0
\]
7. **Equation 7:**
\[
(y/x + 6x) \, dx + (\ln x - 2) \, dy = 0
\]
### Instructions for Use
- **Identify the Form:** Determine the type of differential equation you are working with (e.g., exact, linear, separable).
- **Methods of Solution:** Apply the appropriate method for solving, such as integration, finding an integrating factor, or using substitution.
- **Verify Solutions:** Check your work and ensure that the solution satisfies the equation.
- **Explore Graphical Solutions:** Where possible, use graphing tools to visualize the solutions and understand their behavior.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fdd8f2877-2578-48c0-ab77-5dda294aaf93%2F5c985c8e-9493-4ce2-ba39-aea23652e193%2Fdmbcf1s_processed.jpeg&w=3840&q=75)
Transcribed Image Text:### Differential Equations
Below are several differential equations. These can be used as practice problems or examples for studying how to solve different forms of differential equations. Review each equation and analyze the structure to determine the appropriate method for solution.
1. **Equation 1:**
\[
2xy \, dx + (x^2 + 1) \, dy = 0
\]
2. **Equation 2:**
\[
(2xy^2 + 2xy \, e^{2x} + e^{2x} y) \, dx + (2x^2 y + x \, e^{2x}) \, dy = 0
\]
3. **Equation 3:**
\[
2xy \, dy + (3x + 2y^2) \, dx = 0
\]
4. **Equation 4:**
\[
(x^2 + xy) \, dx + (y^2 + \frac{1}{2} x^2) \, dy = 0
\]
5. **Equation 5:**
\[
x^3 y^3 \, dx + x(1 + y^2) \, dy = 0
\]
6. **Equation 6:**
\[
(6xy - y^3) \, dx + (4y + 3x^2 - 3xy^2) \, dy = 0
\]
7. **Equation 7:**
\[
(y/x + 6x) \, dx + (\ln x - 2) \, dy = 0
\]
### Instructions for Use
- **Identify the Form:** Determine the type of differential equation you are working with (e.g., exact, linear, separable).
- **Methods of Solution:** Apply the appropriate method for solving, such as integration, finding an integrating factor, or using substitution.
- **Verify Solutions:** Check your work and ensure that the solution satisfies the equation.
- **Explore Graphical Solutions:** Where possible, use graphing tools to visualize the solutions and understand their behavior.
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
Step 1
Step by step
Solved in 4 steps with 4 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)