Algebra and Trigonometry (6th Edition)
6th Edition
ISBN:9780134463216
Author:Robert F. Blitzer
Publisher:Robert F. Blitzer
ChapterP: Prerequisites: Fundamental Concepts Of Algebra
Section: Chapter Questions
Problem 1MCCP: In Exercises 1-25, simplify the given expression or perform the indicated operation (and simplify,...
Related questions
Question
![### Solving Exponential Equations
**Problem Statement:**
Solve the following equation for \( x \):
\[ e^{-2x} = \frac{1}{3} \]
**Step-by-Step Solution:**
1. **Take the natural logarithm on both sides of the equation:**
\[ \ln(e^{-2x}) = \ln\left(\frac{1}{3}\right) \]
2. **Simplify the left-hand side using the property of logarithms** \( \ln(e^y) = y \):
\[ -2x = \ln\left(\frac{1}{3}\right) \]
3. **Solve for \( x \)** by dividing both sides by -2:
\[ x = \frac{\ln\left(\frac{1}{3}\right)}{-2} \]
4. **Use the property of logarithms**: \( \ln\left(\frac{1}{a}\right) = -\ln(a) \):
\[ x = \frac{-\ln(3)}{-2} \]
5. **Simplify further to get the final answer:**
\[ x = \frac{\ln(3)}{2} \]
### Conclusion
The value of \( x \) that satisfies the equation \( e^{-2x} = \frac{1}{3} \) is:
\[ x = \frac{\ln(3)}{2} \]
This approach involves using logarithms to linearize the equation and then solving for the variable.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F349eaa27-36eb-4309-87e3-9ff3181a3e80%2F43488c2b-ac30-415e-9f04-a01278251777%2F7yr34wc_processed.jpeg&w=3840&q=75)
Transcribed Image Text:### Solving Exponential Equations
**Problem Statement:**
Solve the following equation for \( x \):
\[ e^{-2x} = \frac{1}{3} \]
**Step-by-Step Solution:**
1. **Take the natural logarithm on both sides of the equation:**
\[ \ln(e^{-2x}) = \ln\left(\frac{1}{3}\right) \]
2. **Simplify the left-hand side using the property of logarithms** \( \ln(e^y) = y \):
\[ -2x = \ln\left(\frac{1}{3}\right) \]
3. **Solve for \( x \)** by dividing both sides by -2:
\[ x = \frac{\ln\left(\frac{1}{3}\right)}{-2} \]
4. **Use the property of logarithms**: \( \ln\left(\frac{1}{a}\right) = -\ln(a) \):
\[ x = \frac{-\ln(3)}{-2} \]
5. **Simplify further to get the final answer:**
\[ x = \frac{\ln(3)}{2} \]
### Conclusion
The value of \( x \) that satisfies the equation \( e^{-2x} = \frac{1}{3} \) is:
\[ x = \frac{\ln(3)}{2} \]
This approach involves using logarithms to linearize the equation and then solving for the variable.
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 3 steps with 3 images

Recommended textbooks for you

Algebra and Trigonometry (6th Edition)
Algebra
ISBN:
9780134463216
Author:
Robert F. Blitzer
Publisher:
PEARSON

Contemporary Abstract Algebra
Algebra
ISBN:
9781305657960
Author:
Joseph Gallian
Publisher:
Cengage Learning

Linear Algebra: A Modern Introduction
Algebra
ISBN:
9781285463247
Author:
David Poole
Publisher:
Cengage Learning

Algebra and Trigonometry (6th Edition)
Algebra
ISBN:
9780134463216
Author:
Robert F. Blitzer
Publisher:
PEARSON

Contemporary Abstract Algebra
Algebra
ISBN:
9781305657960
Author:
Joseph Gallian
Publisher:
Cengage Learning

Linear Algebra: A Modern Introduction
Algebra
ISBN:
9781285463247
Author:
David Poole
Publisher:
Cengage Learning

Algebra And Trigonometry (11th Edition)
Algebra
ISBN:
9780135163078
Author:
Michael Sullivan
Publisher:
PEARSON

Introduction to Linear Algebra, Fifth Edition
Algebra
ISBN:
9780980232776
Author:
Gilbert Strang
Publisher:
Wellesley-Cambridge Press

College Algebra (Collegiate Math)
Algebra
ISBN:
9780077836344
Author:
Julie Miller, Donna Gerken
Publisher:
McGraw-Hill Education