2(i.) Let øy (t) = E[e*Y] be the moment generating function of the random variable Y. Using conditioning rgument (i.e., E[X] = E[E[X[Y]]) show that øy (t) = E[(øx(t))^], here øx(t) is the m.g.f. of X. 2(ii.) Using the moment generating function from part (i) show that E[Y] = E[N]E[X] 2(ii.) Using the moment generating function from part (i) and the results from part (ii) show that Var[Y] = E[N]Var[X] + (E[X])²Var[N].
2(i.) Let øy (t) = E[e*Y] be the moment generating function of the random variable Y. Using conditioning rgument (i.e., E[X] = E[E[X[Y]]) show that øy (t) = E[(øx(t))^], here øx(t) is the m.g.f. of X. 2(ii.) Using the moment generating function from part (i) show that E[Y] = E[N]E[X] 2(ii.) Using the moment generating function from part (i) and the results from part (ii) show that Var[Y] = E[N]Var[X] + (E[X])²Var[N].
MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
Related questions
Question
Could you solve (i), (ii), (iii)?
Thank you.
![Q2 Let X1, X2, -- be independent and identically distributed random variables. Let N be a non-negative, integer
valued random variable that is independent of the sequence X;, i > 1. Let
...
N
Y =X;.
Q2(i.) Let øy (t) = E[eY] be the moment generating function of the random variable Y. Using conditioning
argument (i.e., E[X] = E[E[X[Y]) show that
ør (t) = E[(øx(t))^],
where øx (t) is the m.g.f. of X.
Q2 (ii.) Using the moment generating function from part (i) show that
E[Y] = E[N]E[X]
Q2 (iii.) Using the moment generating function from part (1) and the results from part (i) show that
Var[Y]
= E[N]Var[X] + (E[X])²Var[N].
Q2(iv.) If X1, X2, ·. are independent and identically distributed exponential random variables with parameter A
and N is a geometric random variable with parameter p independent of the sequence X1, X2, ... (i.e
P(N = n) = p(1 – p)"-1), then show that
N
Y =X;
is exponentially distributed with parameter Xp using the moment generating function from part (i).
Hint: The m.g.f. of an exponential random variable with parameter A is A/(A – t).](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Faf4d5614-e5fa-4399-aabc-c345eeef0588%2Fd265a4ba-51c3-4b74-acfc-a19fa55d781c%2Fblyiguj_processed.png&w=3840&q=75)
Transcribed Image Text:Q2 Let X1, X2, -- be independent and identically distributed random variables. Let N be a non-negative, integer
valued random variable that is independent of the sequence X;, i > 1. Let
...
N
Y =X;.
Q2(i.) Let øy (t) = E[eY] be the moment generating function of the random variable Y. Using conditioning
argument (i.e., E[X] = E[E[X[Y]) show that
ør (t) = E[(øx(t))^],
where øx (t) is the m.g.f. of X.
Q2 (ii.) Using the moment generating function from part (i) show that
E[Y] = E[N]E[X]
Q2 (iii.) Using the moment generating function from part (1) and the results from part (i) show that
Var[Y]
= E[N]Var[X] + (E[X])²Var[N].
Q2(iv.) If X1, X2, ·. are independent and identically distributed exponential random variables with parameter A
and N is a geometric random variable with parameter p independent of the sequence X1, X2, ... (i.e
P(N = n) = p(1 – p)"-1), then show that
N
Y =X;
is exponentially distributed with parameter Xp using the moment generating function from part (i).
Hint: The m.g.f. of an exponential random variable with parameter A is A/(A – t).
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![MATLAB: An Introduction with Applications](https://www.bartleby.com/isbn_cover_images/9781119256830/9781119256830_smallCoverImage.gif)
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
![Probability and Statistics for Engineering and th…](https://www.bartleby.com/isbn_cover_images/9781305251809/9781305251809_smallCoverImage.gif)
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
![Statistics for The Behavioral Sciences (MindTap C…](https://www.bartleby.com/isbn_cover_images/9781305504912/9781305504912_smallCoverImage.gif)
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
![MATLAB: An Introduction with Applications](https://www.bartleby.com/isbn_cover_images/9781119256830/9781119256830_smallCoverImage.gif)
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
![Probability and Statistics for Engineering and th…](https://www.bartleby.com/isbn_cover_images/9781305251809/9781305251809_smallCoverImage.gif)
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
![Statistics for The Behavioral Sciences (MindTap C…](https://www.bartleby.com/isbn_cover_images/9781305504912/9781305504912_smallCoverImage.gif)
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
![Elementary Statistics: Picturing the World (7th E…](https://www.bartleby.com/isbn_cover_images/9780134683416/9780134683416_smallCoverImage.gif)
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
![The Basic Practice of Statistics](https://www.bartleby.com/isbn_cover_images/9781319042578/9781319042578_smallCoverImage.gif)
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
![Introduction to the Practice of Statistics](https://www.bartleby.com/isbn_cover_images/9781319013387/9781319013387_smallCoverImage.gif)
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman