2a The Fourier transform of e-alt is foe-alte-it dt = a²+² G to three decimal places. G = Round your answer to 3 decimal places. . Evaluate, 1 ===7 x 0.5² +6² ²2 d 2π ∙etw2
2a The Fourier transform of e-alt is foe-alte-it dt = a²+² G to three decimal places. G = Round your answer to 3 decimal places. . Evaluate, 1 ===7 x 0.5² +6² ²2 d 2π ∙etw2
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
![The Fourier transform of e-alt is fe-alte-it dt = 2 Evaluate,
1
G
- 2 = Lx0 0.5² + 4² et² dw
2п
-∞
to three decimal places.
G =
Round your answer to 3 decimal places.
The function f(t) has a Fourier transform e-². Select the value of,
P[f](w) = f(6(t− 2)) e-haut dt
from the below list
o F[f](w) = e
○ F[f](w) = €¯36e-12w
○ F[f](w) =
○ F[f](w) =
ܩ
e 36
-12w](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fe37ebe49-731c-47f9-a49b-3a5f656faaa2%2Fed7ea400-f735-4e6a-a2e4-cc3ef45b5bb2%2Fsiu5tca_processed.png&w=3840&q=75)
Transcribed Image Text:The Fourier transform of e-alt is fe-alte-it dt = 2 Evaluate,
1
G
- 2 = Lx0 0.5² + 4² et² dw
2п
-∞
to three decimal places.
G =
Round your answer to 3 decimal places.
The function f(t) has a Fourier transform e-². Select the value of,
P[f](w) = f(6(t− 2)) e-haut dt
from the below list
o F[f](w) = e
○ F[f](w) = €¯36e-12w
○ F[f](w) =
○ F[f](w) =
ܩ
e 36
-12w
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)