25.N-+4, p-u+ow, g-отию, routur ƏN ƏN ƏN when u = 2, v = 3, w = 4 ди душps 20 02

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question

25

 

8:34 1
944
P 9
p+r'
9. z = In(3x + 2y), x= s sin t, y = t cos silami novig 25. N =
10. z = √√√xe", x= 1+ st, y=g²p²0
lib ƏN ƏN ON
wollot 28 0 du dv dw
11. z = e' cos 0,
12. z =tan(u/v),
CHAPTER 14 Partial Derivatives
13. Let p(t)=f(x, y), where f is differentiable, x = g(t),
y=h(t), g(2) = 4, g'(2) = -3, h(2) = 5, h'(2) = 6,
f. (4, 5) = 2, f,(4, 5) = 8. Find p'(2).
14. Let R(s, t)=G(u(s, t), v(s, t)), where G, u, and v are differen-
tiable, u(1, 2) = 5, u,(1, 2) = 4, u,(1, 2) = -3, v(1, 2) = 7,
v,(1, 2) = 2, v,(1, 2) = 6, G,(5, 7)-9, G.(5, 7) = -2. Find
R,(1, 2) and R,(1, 2).
4. P =
15. Suppose f is a differentiable function of x and y, and
g(u, v)=f(e" + sin v, e" + cos v). Use the table of values to
calculate g.(0, 0) and g.(0, 0).
22. T=
17. u=f(x, y),
18. w=f(x, y, z),
19. T = F(p, q, r),
r=r(x, y, z)
20. R = F(t, u)
V
2u + v
aT ƏT ƏT
ap aq ər
rst, 0= √√√5² + 1²
u=2s + 3t, v=3s-2t
(0, 0)
(1, 2)
ap ap
dx dy
f
3
6
nitab
17-20 Use a tree diagram to write out the Chain Rule for the given (
case. Assume all functions are differentiable.pnol a asszontits
where x = x(r, s, t), y = y(r, s, t)
where x = x(u, v), y = y(u, v), z = 2(u, v) bus
where p = p(x, y, z), q = q (x, y, z),
mol
SVIO:
where t = t (w, x, y, z), u = u(w, x, y, z)
g
u² + v² + w²,
6
3
21-26 Use the Chain Rule to find the indicated partial derivatives.
21. z = x + x²y x=s+ 2t-u, y = stu²;
əz əz əz
when s = 4, t = 2, u = 1
as at
du
fx
4
2
16. Suppose f is a differentiable function of x and y, and
dong(r,s) = f(2r-s, s² - 4r). Use the table of values in thiqal on
Exercise 15 to calculate g,(1, 2) and g, (1, 2).
36.
fy
8
U=
= pq√r, v= p√qr;
5
when p = 2, q=1, r=4
23. w = xy + yz + zx, x= r cos 0, y = r sin 0, z = r0;
dw dw
when r = 2,0 = π/2
är
20
when x = 0, y = 2
u = xe', v = yes, w=e*y;
when u = 2, v = 3, w = 4
26. u = xe, x=a²B, y=B²y, t = y²α;
-1, ß = 2, y = 1
ди ди ди
da' aß' ay
when a =
20
15
10
27-30 Use Equation 6 to find dy/dx.
27. y cos x = x² + y²
29. tan '(x²y) = x + xy²
31-34 Use Equations 7 to find az/ax and əz/ay.
31. x² + 2y² + 3z² = 1
33. e² = xyz
p=u+vw,
DA
5.
q=v + uw,
35. The temperature at a point (x, y) is T(x, y), measured in degrees
Celsius. A bug crawls so that its position after t seconds is
given by x = √√1+1, y = 2+1, where x and y are mea-
sured in centimeters. The temperature function satisfies
T. (2, 3) = 4 and T,(2, 3) = 3. How fast is the temperature
rising on the bug's path after 3 seconds?
10
Wheat production W in a given year depends on the average
temperature I and the annual rainfall R. Scientists estimate
that the average temperature is rising at a rate of 0.15°C/year
and rainfall is decreasing at a rate of 0.1 cm/year. They also
estimate that at current production levels, aw/aT = -2
16 and aW/OR = 8.
x6 (a) What is the significance of the signs of these partial
derivatives?
20
37. The speed of sound traveling through ocean water with salinity
2635 parts per thousand has been modeled by the equation
30
(b) Estimate the current rate of change of wheat production,
dW/dt.
SVEIT
40 t
28. cos(xy) = 1 + sin y
30. e' sin x = x + xy
(min)
82
C = 1449.2 + 4.67 0.055T² + 0.000297³ +0.016D
where C is the speed of sound (in meters per second), T is the
temperature (in degrees Celsius), and D is the depth below the
ocean surface (in meters). A scuba diver began a leisurely dive
into the ocean water; the diver's depth and the surrounding
water temperature over time are recorded in the following
graphs. Estimate the rate of change (with respect to time) of
the speed of sound through the ocean water experienced by the
diver 20 minutes into the dive. What are the units?
r=w+uv,
32. x² - y² +2²-2z = 4
34. yz + x ln y = z²
TA
16
14-
12
10-
8.
×
10
20
30
十二
40
(min)
Transcribed Image Text:8:34 1 944 P 9 p+r' 9. z = In(3x + 2y), x= s sin t, y = t cos silami novig 25. N = 10. z = √√√xe", x= 1+ st, y=g²p²0 lib ƏN ƏN ON wollot 28 0 du dv dw 11. z = e' cos 0, 12. z =tan(u/v), CHAPTER 14 Partial Derivatives 13. Let p(t)=f(x, y), where f is differentiable, x = g(t), y=h(t), g(2) = 4, g'(2) = -3, h(2) = 5, h'(2) = 6, f. (4, 5) = 2, f,(4, 5) = 8. Find p'(2). 14. Let R(s, t)=G(u(s, t), v(s, t)), where G, u, and v are differen- tiable, u(1, 2) = 5, u,(1, 2) = 4, u,(1, 2) = -3, v(1, 2) = 7, v,(1, 2) = 2, v,(1, 2) = 6, G,(5, 7)-9, G.(5, 7) = -2. Find R,(1, 2) and R,(1, 2). 4. P = 15. Suppose f is a differentiable function of x and y, and g(u, v)=f(e" + sin v, e" + cos v). Use the table of values to calculate g.(0, 0) and g.(0, 0). 22. T= 17. u=f(x, y), 18. w=f(x, y, z), 19. T = F(p, q, r), r=r(x, y, z) 20. R = F(t, u) V 2u + v aT ƏT ƏT ap aq ər rst, 0= √√√5² + 1² u=2s + 3t, v=3s-2t (0, 0) (1, 2) ap ap dx dy f 3 6 nitab 17-20 Use a tree diagram to write out the Chain Rule for the given ( case. Assume all functions are differentiable.pnol a asszontits where x = x(r, s, t), y = y(r, s, t) where x = x(u, v), y = y(u, v), z = 2(u, v) bus where p = p(x, y, z), q = q (x, y, z), mol SVIO: where t = t (w, x, y, z), u = u(w, x, y, z) g u² + v² + w², 6 3 21-26 Use the Chain Rule to find the indicated partial derivatives. 21. z = x + x²y x=s+ 2t-u, y = stu²; əz əz əz when s = 4, t = 2, u = 1 as at du fx 4 2 16. Suppose f is a differentiable function of x and y, and dong(r,s) = f(2r-s, s² - 4r). Use the table of values in thiqal on Exercise 15 to calculate g,(1, 2) and g, (1, 2). 36. fy 8 U= = pq√r, v= p√qr; 5 when p = 2, q=1, r=4 23. w = xy + yz + zx, x= r cos 0, y = r sin 0, z = r0; dw dw when r = 2,0 = π/2 är 20 when x = 0, y = 2 u = xe', v = yes, w=e*y; when u = 2, v = 3, w = 4 26. u = xe, x=a²B, y=B²y, t = y²α; -1, ß = 2, y = 1 ди ди ди da' aß' ay when a = 20 15 10 27-30 Use Equation 6 to find dy/dx. 27. y cos x = x² + y² 29. tan '(x²y) = x + xy² 31-34 Use Equations 7 to find az/ax and əz/ay. 31. x² + 2y² + 3z² = 1 33. e² = xyz p=u+vw, DA 5. q=v + uw, 35. The temperature at a point (x, y) is T(x, y), measured in degrees Celsius. A bug crawls so that its position after t seconds is given by x = √√1+1, y = 2+1, where x and y are mea- sured in centimeters. The temperature function satisfies T. (2, 3) = 4 and T,(2, 3) = 3. How fast is the temperature rising on the bug's path after 3 seconds? 10 Wheat production W in a given year depends on the average temperature I and the annual rainfall R. Scientists estimate that the average temperature is rising at a rate of 0.15°C/year and rainfall is decreasing at a rate of 0.1 cm/year. They also estimate that at current production levels, aw/aT = -2 16 and aW/OR = 8. x6 (a) What is the significance of the signs of these partial derivatives? 20 37. The speed of sound traveling through ocean water with salinity 2635 parts per thousand has been modeled by the equation 30 (b) Estimate the current rate of change of wheat production, dW/dt. SVEIT 40 t 28. cos(xy) = 1 + sin y 30. e' sin x = x + xy (min) 82 C = 1449.2 + 4.67 0.055T² + 0.000297³ +0.016D where C is the speed of sound (in meters per second), T is the temperature (in degrees Celsius), and D is the depth below the ocean surface (in meters). A scuba diver began a leisurely dive into the ocean water; the diver's depth and the surrounding water temperature over time are recorded in the following graphs. Estimate the rate of change (with respect to time) of the speed of sound through the ocean water experienced by the diver 20 minutes into the dive. What are the units? r=w+uv, 32. x² - y² +2²-2z = 4 34. yz + x ln y = z² TA 16 14- 12 10- 8. × 10 20 30 十二 40 (min)
3
О
19.
ди
Ət 1 дх : at
ат
ду
ӘТ
əz
21.
ar
29.
31.
SI
||
||
Әх
ди дх
дr
ər
+
X
дх др Әх
ат др
ӘТ Әт др
др ду
ӘТ др
др дz
1582, 3164, -700
+
+
ди ду
ду д
+
ay ar' a
+
ӘТ
dq
дадх
55
25. 14, -96, 14 27.
ат да
да ду
от да
+
ат
dr
Әт
+
да дz д
23.
2x +
+
4..4
-
1 + x+y2 + y2 + x+y
x² - 2xy - 2x³y
5..3
2y
37
33.
COS X
е
eº
У
Transcribed Image Text:3 О 19. ди Ət 1 дх : at ат ду ӘТ əz 21. ar 29. 31. SI || || Әх ди дх дr ər + X дх др Әх ат др ӘТ Әт др др ду ӘТ др др дz 1582, 3164, -700 + + ди ду ду д + ay ar' a + ӘТ dq дадх 55 25. 14, -96, 14 27. ат да да ду от да + ат dr Әт + да дz д 23. 2x + + 4..4 - 1 + x+y2 + y2 + x+y x² - 2xy - 2x³y 5..3 2y 37 33. COS X е eº У
Expert Solution
steps

Step by step

Solved in 2 steps

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning