25. ∞ (−1)" (n+1) 3″ 22n+1 n=1 Answer 26. ☎ (-1)" √ñ In n n=2 27. 27, 28, 29, 30, and 31 Find the sum of the series. (-3) ¹-1 23n n=1

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Solve questions 25 and 27 for calculus. Image is attached. 

### Series Convergence Problems

**Instructions:** For each series below, determine whether it is absolutely convergent, conditionally convergent, or divergent.

**23.**
\[
\sum_{n=1}^{\infty} (-1)^{n-1}n^{-1/3}
\]
<br>

**24.**
\[
\sum_{n=1}^{\infty} (-1)^{n-1}n^{-3}
\]
<br>

**25.**
\[
\sum_{n=1}^{\infty} \frac{(-1)^{n}(n+1)3^n}{2^{2n+1}}
\]
<br>

**26.**
\[
\sum_{n=2}^{\infty} \frac{(-1)^{n}\sqrt{n}}{\ln n}
\]

---

### Series Sum Problems

**27.**
Find the sum of the series:
\[
\sum_{n=1}^{\infty} \frac{(-3)^{n-1}}{2^n}
\]

---

**Note:** Ensure to justify your answers using appropriate theorems and tests related to series convergence or divergence.
Transcribed Image Text:### Series Convergence Problems **Instructions:** For each series below, determine whether it is absolutely convergent, conditionally convergent, or divergent. **23.** \[ \sum_{n=1}^{\infty} (-1)^{n-1}n^{-1/3} \] <br> **24.** \[ \sum_{n=1}^{\infty} (-1)^{n-1}n^{-3} \] <br> **25.** \[ \sum_{n=1}^{\infty} \frac{(-1)^{n}(n+1)3^n}{2^{2n+1}} \] <br> **26.** \[ \sum_{n=2}^{\infty} \frac{(-1)^{n}\sqrt{n}}{\ln n} \] --- ### Series Sum Problems **27.** Find the sum of the series: \[ \sum_{n=1}^{\infty} \frac{(-3)^{n-1}}{2^n} \] --- **Note:** Ensure to justify your answers using appropriate theorems and tests related to series convergence or divergence.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps with 4 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,