25. F(s) = = 7s² +23s + 30 (s − 2) (s² + 2s + 5)

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
100%
Number 25 Please
In Problems 21–30, determine \(\mathcal{L}^{-1}\{F\}\).

21. \( F(s) = \frac{6s^2 - 13s + 2}{s(s - 1)(s - 6)} \)

22. \( F(s) = \frac{s + 11}{(s - 1)(s + 3)} \)

23. \( F(s) = \frac{5s^2 + 34s + 53}{(s + 3)^2(s + 1)} \)

24. \( F(s) = \frac{7s^2 - 41s + 84}{(s - 1)(s^2 - 4s + 13)} \)

25. \( F(s) = \frac{7s^2 + 23s + 30}{(s - 2)(s^2 + 2s + 5)} \)

26. \( F(s) = \frac{7s^3 - 2s^2 - 3s + 6}{s^3(s - 2)} \)

27. \( s^2F(s) - 4F(s) = \frac{5}{s + 1} \)

28. \( s^2F(s) + sF(s) - 6F(s) = \frac{s^2 + 4}{s^2 + s} \)
Transcribed Image Text:In Problems 21–30, determine \(\mathcal{L}^{-1}\{F\}\). 21. \( F(s) = \frac{6s^2 - 13s + 2}{s(s - 1)(s - 6)} \) 22. \( F(s) = \frac{s + 11}{(s - 1)(s + 3)} \) 23. \( F(s) = \frac{5s^2 + 34s + 53}{(s + 3)^2(s + 1)} \) 24. \( F(s) = \frac{7s^2 - 41s + 84}{(s - 1)(s^2 - 4s + 13)} \) 25. \( F(s) = \frac{7s^2 + 23s + 30}{(s - 2)(s^2 + 2s + 5)} \) 26. \( F(s) = \frac{7s^3 - 2s^2 - 3s + 6}{s^3(s - 2)} \) 27. \( s^2F(s) - 4F(s) = \frac{5}{s + 1} \) 28. \( s^2F(s) + sF(s) - 6F(s) = \frac{s^2 + 4}{s^2 + s} \)
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,